Thiamine-responsive inborn errors of metabolism

  • M. Duran
  • S. K. Wadman
Section IV: Riboflavin, Thiamine, Pyridoxine And Vitamin E

Abstract

Three different inherited disorders are known in which thiamine may exert a beneficial effect: maple syrup urine disease (MSUD), lactic acidaemia and the syndrome of megaloblastic anaemia with sensorineural deafness and diabetes mellitus. The amounts of thiamine which were used for long-term treatment varied from 20 to 2400 mg day−1. Additional treatment, such as the reduction of dietary branched chain amino acids in MSUD, could not be omitted in some cases. It has been shown that the vitamin improves the stability of the branched chain ketoacid decarboxylase, although some weeks may be needed to observe thein vivo effect of treatment. A prolonged trial with high doses of thiamine should always be given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blass, J. P., Lonsdale, D., Uhlendorf, B. W. and Avigan, J. Intermittent ataxia with pyruvate decarboxylase deficiency.Clin. Res. 18 (1970) 393Google Scholar
  2. Brunette, M. G., Delvin, E., Hazel, B. and Scriver, C. R. Thiamine-responsive lactic acidosis in a patient with deficient low-K m pyruvate carboxylase activity in liver.Pediatrics 50 (1972) 702–711Google Scholar
  3. Chuang, D. T., Ku, L. S. and Cox, R. P. Thiamin-responsive maple syrup urine disease: decreased affinity of the mutant branched-chainα-keto acid dehydrogenase forα-ketoisovalerate and thiamin pyrophosphate.Proc. Natl. Acad. Sci. USA 79 (1982) 3300–3304Google Scholar
  4. Cooper, J. R., Itokawa, Y. and Pincus, J. H. Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy.Science 164 (1969) 74–75Google Scholar
  5. Danner, D. J., Wheeler, F. B., Lemmon, S. K. and Elsas, L. J.In vivo andin vitro response of human branched chainα-ketoacid dehydrogenase to thiamine and thiamine pyrophosphate.Pediatr. Res. 12 (1978) 235–238Google Scholar
  6. Davis, R. E. and Icke, G. C. Clinical chemistry of thiamine.Adv. Clin. Chem. 23 (1983) 93–140Google Scholar
  7. Duran, M., Tielens, A. G. M., Wadman, S. K., Stigter, J. C. M. and Kleijer, W. J. Effects of thiamine in a patient with a variant form of branched-chain ketoaciduria.Acta Paediatr. Scand. 67 (1978) 367–372Google Scholar
  8. Elsas, L. J. and Danner, D. J. The role of thiamin in maple syrup urine disease.Ann. N. Y. Acad. Sci. 378 (1982) 404–427Google Scholar
  9. Elsas, L. J., Danner, D. J., Lubitz, D., Fernhoff, P. M. and Dembure, P. P. Metabolic consequences of inherited defects in branched chainα-ketoacid dehydrogenase: mechanism of thiamine action. In Walser M. and Williamson, J. P. (eds.)Metabolism and Clinical Implications of Branched Chain Amino and Ketoacids, Elsevier, Amsterdam, 1981, pp. 369–382Google Scholar
  10. Fritsch, G., Langenbeck, U., Wendel, U., Lehnert, W., Palm, W. and Steger, W. Intermittierende Form der Ahornsirup-krankheit bei einem 12jährigen Knaben: Klinik, Diagnostik und Therapie.Klin Pädiat. 195 (1983) 351–354Google Scholar
  11. Haworth, C., Evans, D. I. K., Mitra, J. and Wickramasinghe, S. N. Thiamine responsive anaemia: study of two further cases.Br. J. Haematol. 50 (1982) 549–561Google Scholar
  12. Heffelfiinger, S. C., Sewell, E. T., Elsas, L. J. and Danner, D. J. Direct physical evidence for stabilization of branched chainα-ketoacid dehydrogenase by thiamin pyrophosphate.Am. J. Hum. Genet. 36 (1984) 802–808Google Scholar
  13. van der Horst, J. L. and Wadman, S. K. A variant form of branched-chain ketoaciduria.Acta Paediatr. Scand. 60 (1971) 594–599Google Scholar
  14. Kodama, S., Seki, A., Hanabusa, M., Morisita, Y., Sakurai, T. and Matsuo, T. Mild variant of maple syrup urine disease.Eur. J. Pediatr. 124 (1976) 31–36Google Scholar
  15. Krawiecki, N., Hartlage, P., Roesel, A., Carter, L. and Hommes, F. A. Thiamine responsive lactacidemia.J. Inher. Metab. Dis. Suppl. 2 (1984) 98 (title only)Google Scholar
  16. Lonsdale, D., Faulkner, W. R., Price, J. W. and Smeby, R. R. Intermittent cerebellar ataxia associated with hyperpyruvic acidemia, hyperalaninemia, and hyperalaninuria.Pediatrics 43 (1969) 1025–1034Google Scholar
  17. Menkes, J. H. Maple syrup urine disease: Isolation and identification of organic acids in the urine.Pediatrics 23 (1959) 348–353Google Scholar
  18. Poggi, V., Longo, G., DeVizia, B., Andria, G., Rindi, G., Patrini, C. and Cassandro, E. Thiamin-responsive megaloblastic anaemia: a disorder of thiamin transport?J. Inher. Metab. Dis. 7, Suppl. 2 (1984) 153–154Google Scholar
  19. Pueschel, S. M., Bresnan, M. J., Shih, V. E. and Levy, H. L. Thiamine-responsive intermittent branched-chain ketoaciduria.J. Pediatr. 94 (1979) 628–631Google Scholar
  20. Rogers, L. E., Stanley-Porter, F. and Sidbury, J. B. Thiamine-responsive megaloblastic anemia.J. Pediatr. 74 (1969) 494–504Google Scholar
  21. Scriver, C. R., MacKenzie, S., Clow, C. L. and Delvin, E. Thiamin responsive maple syrup urine disease.Lancet i (1971) 310–311Google Scholar
  22. Smit, G. P. A., le Coultre, R., Fernandes, J., Berger, R. and Begeer, J. H. Reversible symptoms of the central and peripheral nervous system in a patient with pyruvate decarboxylase (E1) deficiency.Abstr. 22nd Symp. SSIEM, Newcastle (1984) 71Google Scholar
  23. Viana, M. B. and Carvalho, R. I. Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: a new syndrome?J. Pediatr. 93 (1978) 235–238Google Scholar
  24. Wick, H., Schweizer, K. and Baumgartner, R. Thiamine dependency in a patient with congenital lacticacidaemia due to pyruvate dehydrogenase deficiency.Agents Actions 7 (1977) 405–410Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1985

Authors and Affiliations

  • M. Duran
    • 1
  • S. K. Wadman
    • 1
  1. 1.University Children's Hospital, ‘Het Wilhelmina Kinderziekenhuis’UtrechtThe Netherlands

Personalised recommendations