Skip to main content
Log in

Riboflavin-responsive defects of β-oxidation

  • Section IV: Riboflavin, Thiamine, Pyridoxine And Vitamin E
  • Published:
Journal of Inherited Metabolic Disease

Abstract

The key reaction in the β-oxidation of fatty acids is the acyl-CoA dehydrogenation, catalyzed by short chain, medium chain, and long chain acyl-CoA dehydrogenases. Acyl-CoA dehydrogenation reactions are also involved in the metabolism of the branched chain amino acids, where isovaleryl-CoA and 2-methylbutyryl-CoA dehydrogenases are involved and in the metabolism of lysine, 5-hydroxylysine and tryptophan, where glutaryl-CoA dehydrogenase functions. In all of these dehydrogenation systems reducing equivalents are transported to the main respiratory chain by electron transfer flavoprotein (ETF) and electron transfer flavoprotein dehydrogenase (ETFDH), which are common to all the dehydrogenation systems. The acyl-CoA dehydrogenation enzymes are dependent on flavin adenine dinucleotide (FAD) as coenzyme, for which riboflavin is the precursor. Patients with multiple acyl-CoA dehydrogenation deficiencies have been found in whom the defect has been located to ETF and/or ETFDH. A few patients with multiple acyl-CoA dehydrogenation deficiencies have been described, in whom no defects in acyl-CoA dehydrogenases, ETF or ETFDH have been found but who respond clinically and biochemically to pharmacological doses of riboflavin. This indicates a defect related to the metabolism of FAD. An uptake defect of riboflavin or a synthesis defect of FAD from riboflavin have been excluded byin vivo andin vitro studies. A mitochondrial transport defect of FAD or a defect in the binding FAD to ETF and/or ETFDH remains possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamji, M. S. Glutathione reductase activity in red blood cells and riboflavin nutritional status in humans.Clin. Chim. Acta 26 (1969) 263–269

    Google Scholar 

  • Besrat, A., Polan, C. E. and Henderson, L. M. Mammalian metabolism of glutaric acid.J. Biol. Chem. 244 (1969) 1461–1467

    Google Scholar 

  • Beutler, E. Glutathione reductase: Stimulation in normal subject by riboflavin supplementation.Science 165 (1969) 613–615

    Google Scholar 

  • Christensen, E. Improved assay of glutaryl-CoA dehydrogenase in cultured cells and liver; Application to glutaric aciduria type I.Clin. Chim. Acta 129 (1983) 91–97

    Google Scholar 

  • Christensen, E. Glutaryl-CoA dehydrogenase activity determined with intact electron transport chain: Application to glutaric aciduria type II.J. Inher. Metab. Dis. 7, Suppl. 2 (1984) 103–104

    Google Scholar 

  • Christensen, E. and Brandt, N. J. Studies on glutaryl-CoA dehydrogenase in leucocytes, fibroblasts and amniotic fluid cells. The normal enzyme and the mutant form in patients with glutaric aciduria.Clin. Chim. Acta 88 (1978) 267–276

    Google Scholar 

  • Christensen, E., Kølvraa, S. and Gregersen, N. Glutaric aciduria type II: Evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase.Pediatr. Res. 18 (1984) 663–667

    Google Scholar 

  • Dommes, V. and Kunau, W. H. Purification and properties of acyl coenzyme A dehydrogenases from bovine liver.J. Biol. Chem. 259 (1984) 1789–1797

    Google Scholar 

  • Dusheiko, G., Kew, M. C., Joffe, B. I., Lewin, J. R., Path, F. F., Mantagos, S. and Tanaka, K. Recurrent hypoglycemia associated with glutaric aciduria type II in an adult.N. Engl. J. Med. 301 (1979) 1405–1409

    Google Scholar 

  • Furuta, S., Miyazawa, S. and Hashimoto, T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein.J. Biochem. 90 (1981) 1739–1750

    Google Scholar 

  • Glatzle, D., Weber, F. and Wiss, O. Enzymatic test for the detection of a riboflavin deficiency. NADPH-dependent glutathione reductase of red blood cells and its activation by FADin vitro.Experimentia 24 (1968) 1122

    Google Scholar 

  • Goodman, S. I., McCabe, E. R. B., Fennessey, P. V. and Mace, J. W. Multiple acyl-CoA dehydrogenase deficiency (glutaric aciduria type II) with transient hypersarcosinemia and sarcosinuria: Possible inherited deficiency of an electron transfer flavoprotein.Pediatr. Res. 14 (1980) 12–17

    Google Scholar 

  • Green, A., Marshall, T. G., Bennett, M. J., Gray, R. G. F. and Pollitt, R. J. Riboflavin responsive ethylmalonic-adipic aciduria.J. Inher. Metab. Dis. 8 (1985) 67–70

    Google Scholar 

  • Gregersen, N. Fatty acyl-CoA dehydrogenase deficiency: Enzyme measurement and studies on alternative metabolism.J. Inher. Metab. Dis. 7, Suppl. 1 (1984) 28–32

    Google Scholar 

  • Gregersen, N., Fjord Christensen, M. and Kølvraa, S. Metabolic effects of carnitine medication in a patient with multiple acyl-CoA dehydrogenation deficiency.J. Inher. Metab. Dis. (In press) (1985)

  • Gregersen, N., Kølvraa, S., Rasmussen, K., Christensen, E., Brandt, N. J., Ebbesen, F. and Hansen, F. A. Biochemical studies in a patient with defects in the metabolism of acyl-CoA and sarcosine: Another case of glutaric aciduria type II.J. Inher. Metab. Dis. 3 (1980) 67–72

    Google Scholar 

  • Gregersen, N., Wintzensen, H., Kølvraa, S., Christensen, E., Christensen, M. F., Brandt, N. J. and Rasmussen, K. C6-C10-dicarboxylic aciduria: Investigations of a patient with riboflavin responsive multiple acyl-CoA dehydrogenation defects.Pediatr. Res. 16 (1982) 861–868

    Google Scholar 

  • Hall, C. L. and Kamin, H. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria.J. Biol. Chem. 250 (1975) 3476–3486

    Google Scholar 

  • Harpey, J. P., Charpentier, C., Goodman, S. I., Darbois, Y., Lefebvre, G. and Sebbah, J. Multiple acyl-CoA dehydrogenase deficiency occurring in pregnancy and caused by a defect in riboflavin metabolism in the mother.J. Pediatr. 103 (1983) 394–398

    Google Scholar 

  • Ikeda, Y., Dabrowski, C. and Tanaka, K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria: Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase.J. Biol. Chem. 158 (1983) 1066–1076

    Google Scholar 

  • Ikeda, Y. and Tanaka, K. Isolation of 2-Me-branched chain acyl-CoA dehydrogenase from rat liver mitochondria.Fed. Proc. 41 (1982) 1192

    Google Scholar 

  • Ikeda, Y. and Tanaka, K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria.J. Biol. Chem. 258 (1983) 1077–1085

    Google Scholar 

  • Josko, W. J. and Levy, G. Absorption, protein binding, and elimination of riboflavin. In Rivlin, R. S. (ed.)Riboflavin, Plenum Press, New York, 1975, pp. 99–152

    Google Scholar 

  • Kølvraa, S., Gregersen, N., Christensen, E. and Hobolth, N.In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: Evidence for a defect in general acyl-CoA dehydrogenase.Clin. Chim. Acta 126 (1982) 53–67

    Google Scholar 

  • Krieger, I. and Bieber, L. L. Carnitine metabolism in recurrent Reye syndrome due to defective acetyl-CoA disposal.Pediatr. Res. 18 (1984) 294A

    Google Scholar 

  • McCormick, D. B. Metabolism of riboflavin. In Rivlin, R. S. (ed.)Riboflavin, Plenum Press, New York, 1975, pp. 153–198

    Google Scholar 

  • Mantagos, S., Genel, M. and Tanaka, K. Ethylmalonic-adipic aciduria:In vivo andin vitro studies indicating deficiency of activities of multiple acyl-CoA dehydrogenases.J. Clin. Invest. 64 (1979) 1580–1589

    Google Scholar 

  • Mapson, L. W. and Isherwood, F. A. Glutathione reductase from germinated peas.Biochem. J. 86 (1963) 173–191

    Google Scholar 

  • Massey, V. Lipoyl dehydrogenase. In Boyer, P. D., Lardy, H. and Myrback, K. (eds.)The Enzymes, Vol. 7, Academic Press, New York, 1963, p. 275

    Google Scholar 

  • Mooy, P. D., Giesberts, M. A. H., van Gelderen, H. H., Scholte, H. R., Luyt-Houwen, I. E. M., Przyrembel, H. and Blom, W. Glutaric aciduria type II. Multiple defects in isolated muscle mitochondria and deficientβ-oxidation in fibroblasts.J. Inher. Metab. Dis. 7, Suppl. 2 (1984) 101–102

    Google Scholar 

  • Noda, C., Rhead, W. J. and Tanaka, K. Isovaleryl-CoA dehydrogenase: Demonstration in rat liver mitochondria by ion exchange chromatography and isoelectric focusing.Proc. Natl. Acad. Sci. USA 77 (1980) 2646–2650

    Google Scholar 

  • Przyrembel, H., Wendel, U., Becker, K., Bremer, H. J., Bruinvis, L., Ketting, D. and Wadman, S. K. Glutaric aciduria type II. Report on a previously undescribed metabolic disorder.Clin. Chim. Acta 66 (1976) 227–239

    Google Scholar 

  • Rhead, W. R. and Fritchman, K. N. Riboflavin-responsive ethylmalonic-adipic aciduria:In vitro confirmation of riboflavin responsiveness in intact fibroblasts.Pediatr. Res. 17 (1983) 218A

    Google Scholar 

  • Ruzicka, F. J. and Beinert, H. A new ion-sulfur flavoprotein of the respiratory chain.J. Biol. Chem. 252 (1977) 8440–8445

    Google Scholar 

  • Sakurai, T., Miyazawa, S., Furuta, S. and Hashimoto, T. Riboflavin deficiency andβ-oxidation systems in rat liver.Lipids 17 (1982) 598–604

    Google Scholar 

  • Schutgens, R. B. H., Scholte, H. R., Luyt-Houwen, I. E. M., Veder, H. A., De Visser, M. and Bethle, J. Glutaric aciduria type II: Clinical and biochemical observations and riboflavin treatment in four sisters.J. Inher. Metab. Dis. 7, Suppl. 2 (1984) 97

    Google Scholar 

  • Sweetman, L., Nyhan, W. L., Trauner, D. A., Merritt, T. A. and Singh, M. Glutaric aciduria type II.J. Pediatr. 96 (1980) 1020–1026

    Google Scholar 

  • Weimar, W. R. and Neims, A. H. Physical and chemical properties of the flavins; Binding of flavins to protein and conformational effects; Biosynthesis of riboflavin. In Rivlin, R. S. (ed.)Riboflavin, Plenum Press, New York, 1975, pp. 1–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N. Riboflavin-responsive defects of β-oxidation. J Inherit Metab Dis 8 (Suppl 1), 65–69 (1985). https://doi.org/10.1007/BF01800662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01800662

Keywords

Navigation