Journal of Inherited Metabolic Disease

, Volume 11, Supplement 1, pp 94–109 | Cite as

Recent advances in cystic fibrosis

  • M. A. McPherson


Cystic fibrosis, one of the most common lethal inherited disorders in N. European and N. American populations, is characterized by the production of abnormally viscous mucous secretions in the lungs and digestive tract. The pathophysiological basis of the disease is unknown. However, during the last few years, rapid advances in molecular genetics and biochemical and physiological studies on cystic fibrosis epithelial cells have led to optimism that the cystic fibrosis defect will soon be identified. Current evidence suggests that the basic disturbance lies in altered regulation of protein secretion and electrolyte transport leading to an imbalance in composition of epithelial secretions in cystic fibrosis patients. Increasing knowledge of the mechanisms regulating production and secretion of mucins and movement of electrolytes across the cell membrane should lead to development of pharmacological manipulation(s) to correct the cellular abnormality. Ultimately, it is hoped that this will lead to the development of a rational treatment for cystic fibrosis patients.


Cystic Fibrosis Digestive Tract Protein Secretion Rational Treatment Molecular Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alton, E. W. F. W., Batten, J., Hodson, M., Wallwork, J., Higenbottam, T. and Geddes, D. M. Absence of electrochemical defect of cystic fibrosis in transplanted lung.Lancet 1 (1987a) 1026Google Scholar
  2. Alton, E. W. F. W., Hay, J. G., Munro, C. and Geddes, D. M. Measurement of nasal potential difference in adult cystic fibrosis, Young's syndrome and bronchiectasis.Thorax (1987b) in pressGoogle Scholar
  3. Beaudet, A., Bowcock, A., Buchwald, M., Cavalli-Sforza, L., Farrall, M., King, M.-C., Klinger, K., Lalouel, J.-M., Lathrop, G., Naylor, S., Ott, J., Tsui, L.-C., Wainwright, B., Watkins, P., White, R. and Williamson, R. Linkage of cystic fibrosis to two tightly linked DNA markers: joint report from a collaborative study.Am. J. Hum. Genet. 39 (1986) 681–693Google Scholar
  4. Behm, J. K., Hagiwara, G., Lewiston, N. J., Quinton, P. M. and Wine, J. J. Hyposecretion ofβ-adrenergically induced sweating in cystic fibrosis heterozygotes.Pediatr. Res. 22 (1987) 271–276Google Scholar
  5. Bijman, J. and Quinton, P. M. Apparent absence of cystic fibrosis sweat factor on ionselective and transport properties of the perfused human sweat duct.Pediatr. Res. 18 (1984) 1292–1296Google Scholar
  6. Boucher, R. C., Stutts, M. J., Knowles, M. R., Cantley, L. and Gatzy, J. T. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation.J. Clin. Invest. 78 (1986) 1245–1252Google Scholar
  7. Brock, D. J. H., Bedgood, D., Barron, L. and Hayward, C. Prospective prenatal diagnosis of cystic fibrosis.Lancet 2 (1985) 1175–1178Google Scholar
  8. Brown, G. R., Richardson, A. E. and Dormer, R. L. The role of a Ca2+, Mg-ATPase of the rough endoplasmic reticulum in regulating intracellular Ca2+ during cholinergic stimulation of rat pancreatic acini.Biochim. Biophys. Acta 902 (1987) 87–92Google Scholar
  9. Burgoyne, R. D. and Cheek, T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis.Biosci. Rep. 7 (1987) 281–288Google Scholar
  10. Case, R. M. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells.Biolog. Rev. 53 (1978) 211–354Google Scholar
  11. Cotton, C. U., Stutts, M. J., Knowles, M. R., Gatzy, J. T. and Boucher, R. C. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium.J. Clin. Invest. 79 (1987) 80–85Google Scholar
  12. Davis, P. B., Shelhamer, J. R. and Kaliner, M. Abnormal adrenergic and cholinergic sensitivity in cystic fibrosis.N. Engl. J. Med. 302 (1980) 1453–1456Google Scholar
  13. De Lisle, R. C. and Hopfer, U. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion.Am. J. Physiol. 250 (1986) G489-G496Google Scholar
  14. De Pont, J. J. H. M. and Fleurens-Jakobs, A. M. M. Synergistic effect of A23187 and a phorbol ester on amylase secretion from rabbit pancreatic acini.FEBS Lett. 170 (1984) 64–68Google Scholar
  15. Di Sant'Agenese, P. A., Darling, G. A. and Shea, E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas.Pediatrics 12 (1953) 549–557Google Scholar
  16. Dorin, J. R., Novak, M., Hill, R. E., Brock, D. J. H., Secher, D. S. and van Heyningen, V. A clue to the basic defect in cystic fibrosis from cloning the cystic fibrosis antigen gene.Nature (London) 326 (1987) 614–617Google Scholar
  17. Dormer, R. L. Direct demonstration of increases in cytosolic free Ca2+ during stimulation of pancreatic enzyme secretion.Biosci. Rep. 3 (1983) 233–240Google Scholar
  18. Dormer, R. L. Introduction of calcium chelators into isolated rat pancreatic acini inhibits amylase release in response to carbamylcholine.Biochem. Biophys. Res. Commun. 119 (1984) 876–883Google Scholar
  19. Dormer, R. L., Brown, G. R. Doughney, C. and McPherson, M. A. Intracellular Ca2+ in pancreatic acinar cells: regulation and role in stimulation of enzyme secretion.Biosci. Rep. 7 (1987) 333–344Google Scholar
  20. Doughney, C., Brown, G. R., McPherson, M. A. and Dormer, R. L. Rapid formation of inositol-1,4,5, P3 in response to carbachol in rat pancreatic acini.Biochim. Biophys. Acta 928 (1987a) 341–347Google Scholar
  21. Doughney, C., Dormer, R. L. and McPherson, M. A. Adrenergic regulation of formation of inositol phosphates in rat submandibular acini.Biochem. J. 241 (1987b) 705–709Google Scholar
  22. Doughney, C., Pedersen, P. S., McPherson, M. A. and Dormer, R. L. Autonomic regulation of inositol phosphate formation in cultured human sweat duct cells.Pediatr. Pulmonol. Suppl. 1 (1987c) 119Google Scholar
  23. Dubinsky, W. P. Reconstitution of chloride channels from tracheal epithelia.Pediatr. Pulmonol, Suppl. 1 (1987) 51–52Google Scholar
  24. Eiberg, H., Mohr, J., Schmiegelow, K., Nielsen, L. S. and Williamson, R. Linkage relationships of paraoxonase (PON) with other markers: indication of PON-cystic fibrosis synteny.Clin. Genet. 28 (1985) 265–271Google Scholar
  25. Estivill, X., Farrall, M., Scambler, P. J., Bell, G. M., Hawley, K. M. F., Lench, N. J., Bates, G. P., Kruger, H. C., Frederick, P. A., Stanier, P., Watson, E. K., Williamson, R. and Wainwright, B. J. A candidate for the cystic fibrosis locus isolated by selection for methylation-free islands.Nature (London) 326 (1987) 840–845Google Scholar
  26. Farrall, M., Law, H.-Y., Rodeck, C. H., Warren, R., Stanier, P., Super, M., Lissens, W., Scambler, P., Watson, E., Wainwright, B. and Williamson, R. First-trimester prenatal diagnosis of cystic fibrosis with linked DNA probes.Lancet 2 (1986a) 1402–1405Google Scholar
  27. Farrall, M., Scambler, P. J. and Klinger, K. W. Cystic fibrosis carrier detection using a linked gene probe.J. Med. Genet. 23 (1986b) 295–299Google Scholar
  28. Frizzell, R. A., Rechkemmer, G. and Shoemaker, R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis.Science 233 (1986) 558–560Google Scholar
  29. Gibson, L. E. and Cooke, R. E. A test for concentration of electrolytes in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis.Pediatrics 23 (1959) 545–552Google Scholar
  30. Gomperts, B. D. Calcium shares the limelight in stimulus-secretion coupling.TIBS 11 (1986) 290–292Google Scholar
  31. Goodchild, M. C. and Dodge, J. A.Cystic Fibrosis Manual of Diagnosis and Management, 2nd Edn., Balliere Tindall Press, Eastbourne, 1985Google Scholar
  32. Hadorn, B., Zoppi, G., Shmerling, D. H., Prader, A., McIntyre, I. and Anderson, C. M. Quantitative assessment of exocrine pancreatic function in infants and children.J. Pediatr. 73 (1968) 39–50Google Scholar
  33. Katz, S., Schoni, M. H. and Bridges, M. A. The calcium hypothesis of cystic fibrosis.Cell Calcium 5 (1984) 421–440Google Scholar
  34. Kealey, T. Phosphorylation studies in isolated human eccrine sweat glands. In: Mastella, G. and Quinton, P. M. (eds.)Cellular and Molecular Basis of Cystic Fibrosis, San Francisco Press, San Francisco (1987), pp. 150–154Google Scholar
  35. Klee, C. B. and Newton, D. L. Calmodulin: an overview. In: Parratt, J. R. (ed.)Control and Manipulation of Calcium Movement, Raven Press, NY (1985) 131–146Google Scholar
  36. Knowles, M. R., Gatzy, J. T. and Boucher, R. C. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis.N. Engl. J. Med. 305 (1981) 1489–1495Google Scholar
  37. Knowlton, R. G., Cohen-Haguenauer, O., Van Cong, N., Frezal, J., Brown, V. A., Barker, D., Braman, J. C., Schumm, J. W., Tsui, L.-C., Buchwald, M. and Donis-Keller, H. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7.Nature (London) 318 (1985) 380–382Google Scholar
  38. Lathrop, G. M., Carroll, M., O'Connell, P., Wainwright, B., Leppert, M., Nakamura, Y., Lench, N., Kruyer, H., Dean, M., Park, M., Vande Woude, G., Lalouel, J. M., Williamson, R. and White, R. Refined linkage map of chromosome 7 in the region of the cystic fibrosis gene.Am. J. Hum. Genet. (1988) in pressGoogle Scholar
  39. Lee, C. M., Jones, C. J. and Kealey, T. Biochemical and ultrastructural studies of human eccrine sweat glands isolated by shearing and maintained for seven days.J. Cell. Sci. 72 (1984) 259–274Google Scholar
  40. Li, M., McCann, J. D., Liedtke, C. M., Nairn, A. C., Greengard, P. and Welsh, M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium.Nature (London) 331 (1988) 358–360Google Scholar
  41. McPherson, M. A. and Dormer, R. L. Mucin release and calcium fluxes in isolated rat submandibular acini.Biochem. J. 224 (1984a) 473–481Google Scholar
  42. McPherson, M. A. and Dormer, R. L. Control of secretion of mucin-type glycoproteins from human and rat submandibular acini.Biochem. Soc. Trans. 12 (1984b) 652–653Google Scholar
  43. McPherson, M. A. and Dormer, R. L. The molecular and biochemical basis of cystic fibrosis.Biosci. Rep. 7 (1987) 167–185Google Scholar
  44. McPherson, M. A. and Dormer, R. L. Cystic fibrosis: a disease of stimulus-response coupling.TIBS 13 (1988) 10–13Google Scholar
  45. McPherson, M. A. and Goodchild, M. C. The biochemical defect in cystic fibrosis.Clin. Sci. 74 (1988) 337–345Google Scholar
  46. McPherson, M. A., Dodge, J. A. and Goodchild, M. C. Cystic fibrosis serum stimulates mucin secretion but not calcium efflux from rat submandibular acini.Clin. Chim. Acta 135 (1983) 181–188Google Scholar
  47. McPherson, M. A., Dormer, R. L., Dodge, J. A. and Goodchild, M. C. Autonomic secretory responses of control and cystic fibrosis submandibular acinar cells. In: Lawson, D. (ed.)Cystic Fibrosis: Horizons, John Wiley & Sons, Chichester (1984) p. 51Google Scholar
  48. McPherson, M. A., Dormer, R. L., Dodge, J. A. and Goodchild, M. C. Adrenergic secretory responses of submandibular tissues from control subjects and cystic fibrosis patients.Clin. Chim. Acta 148 (1985) 229–237Google Scholar
  49. McPherson, M. A., Dormer, R. L., Bradbury, N. A., Dodge, J. A. and Goodchild, M. C. Defectiveβ-adrenergic secretory responses in submandibular acinar cells from cystic fibrosis patients.Lancet 2 (1986a) 1007–1008Google Scholar
  50. McPherson, M. A., Dormer, R. L., Dodge, J. A. and Goodchild, M. C. Biochemical basis of cystic fibrosis.Nature (London) 323 (1986b) 400Google Scholar
  51. McPherson, M. A., Dormer, R. L., Bradbury, N. A., Shori, D. K. and Goodchild, M. C. Regulation of secretion of amylase and mucins in control and cystic fibrosis submandibular acinar cells: role of cyclic AMP and Ca2+. In: Mastella, G. and Quinton, P. M. (eds.)Cellular and Molecular Basis of Cystic Fibrosis, San Francisco Press (1988), pp. 343–354Google Scholar
  52. Mangos, J. A. Isolated parotid acinar cells from patients with cystic fibrosis. Functional characterization.J. Dent. Res. 60 (1981) 797–804Google Scholar
  53. Mangos, J. A. and Donnelly, W. H. Isolated parotid acinar cells from patients with cystic fibrosis. Morphology and composition.J. Dent. Res. 60 (1981) 19–25Google Scholar
  54. Mangos, J. A., McSherry, N. R., Barber, T., Arvanitakis, S. N. and Wagner, V. Dispersed rat parotid acinar cells. II Characterisation of adrenergic receptors.Am. J. Physiol. 229 (1975) 560–565Google Scholar
  55. Martinez, J. R., Quissell, D. O. and Giles, M. Potassium release from the rat submaxillary glandin vitro. I. Induction by catecholamines.J. Pharm. Exp. Ther. 198 (1976) 385–394Google Scholar
  56. Ochs, D. L., Korenbrot, J. I. and Williams, J. A. Relation between free cytosolic calcium and amylase release by pancreatic acini.Am. J. Physiol. 249 (1985) G389-G398Google Scholar
  57. Pallen, C. J. and Wang, J. H. A multifunctional calmodulin-stimulated phosphatase.Arch. Biochem. Biophys. 237 (1985) 281–291Google Scholar
  58. Pedersen, P. S. Cholinergic influence on chloride permeability in sweat duct cell cultures from normals and patients with cystic fibrosis.Med. Sci. Res. 15 (1987) 769–770Google Scholar
  59. Pedersen, P. S., Brandt, N. J. and Larsen, E. H. Qualitatively abnormal beta-adrenergic response in cystic fibrosis sweat duct cell culture.IRCS Med. Sci. 14 (1986) 701–702Google Scholar
  60. Pedersen, P. S., Larsen, E. H. and Brandt, N. J. Restitution of chloride permeability in cystic fibrosis.Med. Sci. Res. 15 (1987) 151–152Google Scholar
  61. Petersen, O. H. Calcium-activated potassium channels and fluid secretion by exocrine glands.Am. J. Physiol 251 (1986) G1-G13Google Scholar
  62. Petersen, O. H., Findlay, I., Iwatsuki, N., Singh, J., Gallacher, D. V., Fuller, C. M., Pearson, G. T., Dunne, M. J. and Morris, A. P. Human pancreatic acinar cells: studies on stimulus-secretion coupling.Gastroenterology 89 (1985) 109–117Google Scholar
  63. Quinton, P. M. Chloride impermeability in cystic fibrosis.Nature (London) 301 (1983) 421–422Google Scholar
  64. Quissell, D. O. and Barzen, K. A. Secretory responses of dispersed rat submandibular cells.Am. J. Physiol. 238 (1980) C99-C106Google Scholar
  65. Romeo, G., Bianco, M., Devoto, M., Menozzi, P., Mastella, G., Giunta, A. M., Micalizzi, C., Antonelli, M., Battistini, A., Santamaria, F., Castello, D., Marianelli, A., Marchi, A. G. and Manca, A. Incidence in Italy, genetic heterogeneity and segregation analysis in cystic fibrosis.Am. J. Hum. Genet. 37 (1985) 388–394Google Scholar
  66. Sato, K. and Sato, F. Defectiveβ-adrenergic response of cystic fibrosis sweat glandsin vivo andin vitro.J. Clin. Invest. 73 (1984) 1763–1771Google Scholar
  67. Sauder, R. A., Chesrown, S. E. and Loughlin, G. M. Clinical application of transepithelial potential difference measurements in cystic fibrosis.J. Pediatr. 111 (1987) 353–358Google Scholar
  68. Scambler, P. J., McPherson, M. A., Bates, G., Bradbury, N. A., Dormer, R. L. and Williamson, R. Biochemical and genetic exclusion of calmodulin as the site of the basic defect in cystic fibrosis.Hum. Genet. 76 (1987) 278–284Google Scholar
  69. Schwarz, V. and Simpson, I. M. N. Is salt reabsorption in the human sweat duct subject to control?Clin. Sci. 68 (1985) 441–447Google Scholar
  70. Schneyer, L. H. and Thavornthon, T. Isoproteronol-induced stimulation of sodium absorption in perfused salivary duct.Am. J. Physiol. 224 (1973) 136–139Google Scholar
  71. Schneyer, L. H., Young, J. A. and Schneyer, C. A. Salivary secretion of electrolytes.Physiol. Rev. 52 (1972) 720–777Google Scholar
  72. Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallant, E. A., Wallace, R. W. and Frizzell, R. A. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells.Nature (London) 330 (1987) 752–754Google Scholar
  73. Shori, D. K., Bradbury, N. A., Goodchild, M. C., Dormer, R. L. and McPherson, M. A. Altered calmodulin function in cystic fibrosis.Biochem. Soc. Trans. 16 (1988) 345–346Google Scholar
  74. Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F. and Schulz, I. Effect of inositol-1,4,5-triphosphate on isolated subcellular fractions of rat pancreas.J. Memb. Biol. 81 (1984) 241–253Google Scholar
  75. Taylor, C. J., Baxter, P. S., Hardcastle, J. and Hardcastle, P. T. Absence of secretory response in jejunal biopsy samples from children with cystic fibrosis.Lancet 2 (1987) 107–108Google Scholar
  76. Tsui, L.-C., Buchwald, M., Barker, D., Braman, J. C., Knowlton, R., Schumm, J. W., Eiberg, H., Mohr, J., Kennedy, D., Plavsic, N., Zsiga, M., Markiewicz, D., Akoto, G., Brown, V., Helms, C., Gravins, T., Parker, C., Rediker, K. and Donis-Keller, H. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker.Science 230 (1985) 1054–1057Google Scholar
  77. Wainwright, B. J., Scambler, P. J., Schmidtke, J., Watson, E. A., Law, H.-Y., Farrall, M., Cooke, H. J., Eiberg, H. and Williamson, R. Localization of cystic fibrosis locus to human chromosome 7cen-q22.Nature (London) 318 (1985) 384–385Google Scholar
  78. Welsh, M. J. The respiratory epithelium. In: Andreoli, T. E., Hoffman, J. F., Fanestil, D. D. and Schultz, S. G. (eds.)Physiology of Membrane Disorders. Plenum, NY (1986) pp. 751–766Google Scholar
  79. Welsh, M. J. and Liedtke, C. M. Chloride and potassium channels in cystic fibrosis airway epithelia.Nature (London) 322 (1986) 467–470Google Scholar
  80. White, R., Woodward, S., Leppert, M., O'Connell, P., Hoff, M., Herbst, J., Lalouel, J.-M., Dean, M., and Vande Woude, G. A closely linked genetic marker for cystic fibrosis.Nature (London) 318 (1985) 382–384Google Scholar
  81. Widdicombe, J. H. Cystic fibrosis andβ-adrenergic response of airway epithelial cell cultures.Am. J. Physiol. 251 (1986) R818-R822Google Scholar
  82. Yankaskas, J. R., Knowles, M. R., Gatzy, J. T. and Boucher, R. C. Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture.Lancet 1 (1985) 954–956Google Scholar
  83. Yoshimasa, T., Sibley, D. R., Bouvier, M., Lefkowitz, R. J. and Caron, M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation.Nature (London) 327 (1987) 67–70Google Scholar
  84. Zengerling, S., Olek, K., Tsui, L.-C., Grzeschik, K.-H., Riordan, R. and Buchwald, M. Mapping of DNA markers linked to the cystic fibrosis locus on the long arm of chromosome 7.Am. J. Hum. Genet. 40 (1987) 228–236Google Scholar
  85. Zimmerberg, J. Molecular mechanisms of membrane fusion: steps during phospholipid and exocytotic membrane fusion.Biosci. Rep. 7 (1987) 251–268Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1988

Authors and Affiliations

  • M. A. McPherson
    • 1
  1. 1.Department of Medical BiochemistryUniversity of Wales College of Medicine, Heath ParkCardiffUK

Personalised recommendations