Skip to main content
Log in

The use of recombinant DNA techniques for the diagnosis of familial hypercholesterolaemia

  • Published:
Journal of Inherited Metabolic Disease

Summary

In the UK, about 5% of patients with familial hypercholesterolaemia have a detectable deletion or rearrangement of part of the LDL-receptor gene. This results in the detection of shorter or abnormal sized fragments of the LDL-receptor gene in a Southern blot hybridization. This can be used to follow the inheritance of the defective gene, and for diagnosis in the families of these individuals. In the families of the rest of the patients, diagnosis may be possible using linked restriction fragment length polymorphisms (RFLPs) detected with the LDL-receptor probe. There are now ten common RFLPs of the LDL-receptor gene, with variable sites in the 3′ half of the gene. Over 80% of patients are heterozygous for at least one of these RFLPs, and therefore potentially informative for DNA diagnosis. For a foetus at risk of homozygous familial hypercholesterolaemia, antenatal diagnosis may also be possible using these methods. However, family studies require samples to be available from affected or unaffected relatives of the patient, and this limits the applicability of the tests. For some mutations, the base pair change causing the defect in the LDL-receptor itself creates or destroys a site for a restriction enzyme. Such ‘mutation-specific’ RFLPs could be used for population screening, but so far have only been reported for the familial hypercholesterolaemia mutation that is common in Lebanon. In the future it may be possible to develop mutation-specific oligonucleotide probes for the diagnosis of familial hypercholesterolaemia. These would be appropriate for population screening or screening patients with hyperlipidaemia. This information may be useful if different mutations require different therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonarakis, S. E., Kazazian, H. H. and Orkin, S. H. DNA polymorphism and molecular pathology of the human globin gene clusters.Hum. Genet. 69 (1985) 1–14

    Google Scholar 

  • Armston, A. E., Iverson, S. A., Burke, J. F. Diagnosis of familial hypercholesterolaemia using DNA probes for the low-density lipoprotein (LDL) receptor gene.Ann. Clin. Biochem. 25 (1988) 142–149

    Google Scholar 

  • Berg, K., Pedersen, J. C., Borresen, A. I., Heiberg, A. and Solaas, M. H. Close linkage between a common DNA polymorphism of the low-density lipoprotein (LDL) receptor gene and its use in diagnosis.Cytogenet. Cell. Genet. 40 (1985) 581–582

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. Construction of a genetic linkage map using restriction fragment length polymorphisms.Am. J. Hum. Genet. 32 (1980) 314–331

    Google Scholar 

  • Brink, P. A., Steyn, L. T., Bester, A. J. and Steyn, K. Linkage disequilibrium between a marker on the low-density lipoprotein receptor and high cholesterol levels.South Afr. Med. J. 70 (1986) 80–82

    Google Scholar 

  • Brink, P. A., Steyn, L. T., Coetzee, G. A. and Van der Westhuyzen, D. R. Familial Hypercholesterolaemia in South African Afrikaaners:PvuII andStuI DNA polymorphisms in the LDL-receptor gene consistent with a predominating founder gene effect.Hum. Genet. 77 (1987) 32–35

    Google Scholar 

  • Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L. and Wallace, R. B. Detection of sickle cellβS globin allele by hybridisation with synthetic oligonucleotides.Proc. Natl. Acad. Sci. USA 80 (1983) 278–282

    Google Scholar 

  • Funke, H., Klug, J., Frossard, P., Coleman, R. and Assmann, G.PstI RFLP close to the LDL receptor gene.Nucl. Acid Res. 14 (1986a) 7820

    Google Scholar 

  • Funke, H., Rust, S. and Assmann, G. Detection of apolipoprotein E variants by an oligonucleotide “melting” procedure.Clin. Chem. 32 (1986b) 1285–1289

    Google Scholar 

  • Geisel, J., Weisshaar, B., Oette, K., Mechtel, M. and Doerfler, W. DoubleMspI RFLP in the human LDL-receptor gene.Nucl. Acid. Res. 15 (1987) 3943

    Google Scholar 

  • Gluek, C. J., Heckmann, F., Schoenfeld, M.,et al. Neonatal familial type II hyperlipoproteinaemia: cord blood cholesterol in 1800 births.Metabolism 20 (1971) 597–608

    Google Scholar 

  • Hobbs, H. H., Lehrman, M. A., Yamamoto, T. and Russell, D. W. Polymorphism and evolution of Alu sequences in the human low density lipoprotein receptor gene.Proc. Natl. Acad. Sci. USA 82 (1985) 7651–7655

    Google Scholar 

  • Hobbs, H. H., Esser, V. and Russell, D. W.AvaII polymorphism in the human LDL receptor gene.Nucl. Acid Res. 15 (1987a) 379

    Google Scholar 

  • Hobbs, H. H., Brown, M. S., Russell, P. W., Davigon, J. and Goldstein, J. L. Deletion in LDL receptor gene occurs in majority of French Canadians with FH.N. Engl. J. Med. 317 (1987b) 734–737

    Google Scholar 

  • Horsthemke, B., Kessling, A. M., Seed, M., Wynn, V., Williamson, R. and Humphries, S. E. Identification of a deletion in the low density lipoprotein (LDL) receptor gene in a patient with familial hypercholesterolaemia.Hum. Genet. 71 (1985) 75–78

    Google Scholar 

  • Horsthemke, B., Beisiegel, U., Dunning, A., Williamson, R. and Humphries, S. Non-homologous crossing-over between two alu-repetitive DNA sequences in the LDL-receptor gene: A possible mechanism for a novel mutation in a patient with familial hypercholesterolaemia.Eur. J. Biochem. 164 (1987a) 77–81

    Google Scholar 

  • Horsthemke, B., Dunning, A. and Humphries, S. Identification of deletions in the human low-density lipoprotein (LDL) receptor.J. Med. Genet. 24 (1987b) 144–147

    Google Scholar 

  • Humphries, S. E., Kessling, A. M., Horsthemke, B., Donald, J. A., Seed, M., Jowett, N., Holm, M., Galton, D. J., Wynn, V. and Williamson, R. A common DNA polymorphism of the low density lipoprotein (LDL) receptor gene and its use in diagnosis.Lancet 1 (1985) 1003–1005

    Google Scholar 

  • Kotze, M. J., Langenhoven, E., Dietzsch, E., and Retief, A. E. An RFLP associated with the low-density lipoprotein receptor gene (LDLR).Nucl. Acid Res. 15 (1987) 37

    Google Scholar 

  • Kotze, M. J., Retief, A. E., Brink, P. A. and Weich, H. F. H. A DNA polymorphism in the human low-density lipoprotein receptor gene.S. Afr. J. Med. 70 (1986) 77–79

    Google Scholar 

  • Kwiterovich, P. O., Levy, R. I. and Frederickson, D. S. Diagnosis of familial type-II hyperlipoproteinaemia.Lancet 1 (1973) 118–121

    Google Scholar 

  • Lehrman, M. A., Schneider, W. J., Sudhof, T. C., Brown, M. S., Goldstein, J. L. and Russell, D. W. Mutations in LDL-receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains.Science 227 (1985a) 140–146

    Google Scholar 

  • Lehrman, M. A., Goldstein, J. L., Brown, M. S., Russell, D. W. and Schneider, W. J. Internalization-defective LDL-receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain.Cell 47 (1985b) 735–743

    Google Scholar 

  • Lehrmann, M. A., Goldstein, J. L., Russell, D. W. and Brown, M. S. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolaemia.Cell 48 (1987a) 827–835

    Google Scholar 

  • Lehrman, M. A., Schneider, W. J., Brown, M. S., Davis, C. G., Elhammer, A., Russell, D. W. and Goldstein, J. L. The Lebanese allele at the low-density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum.J. Biol. Chem. 262 (1987b) 401–410

    Google Scholar 

  • Leitersdorf, E. and Hobbs, H. H. Human LDL receptor gene: twoApaLI RFLPs.Nucl. Acid Res. 15 (1987) 2782

    Google Scholar 

  • Leonard, J. V., Whitelaw, A. G. L., Wolff, O. H., Lloyd, J. K. and Slack, J. Diagnosing famiial hypercholesterolaemia in children by measuring serum cholesterol.Br. Med. J. (1977) 1566–1568

  • Leppert, M. F., Hasstedt, S. J., Holm, T., O'Connell, P., Wu, L., Ash, O., Williams, R. R. and White, R. A DNA probe for the LDL receptor gene is tightly linked to hypercholesterolaemia in a pedigree with early coronary disease.Am. J. Hum. Genet. 39 (1986) 300–306

    Google Scholar 

  • Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial Results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering.J. Am. Med. Assoc. 251 (1984) 356–374

    Google Scholar 

  • Morris, S. W. and Price, W. H. DNA sequence polymorphisms in the apolipoprotein A-I/C-III gene cluster.Lancet 2 (1985) 1127–1128

    Google Scholar 

  • Old, J. M., Ward, R. H. T., Karagozlu, F., Petrou, M., Modell, B. and Weatherall, D. J. First-trimester fetal diagnosis for haemoglobinopathies: three cases.Lancet 2 (1982) 1413–1416

    Google Scholar 

  • Steyn, L. T., Pretorius, A., Brink, P. A. and Bester, A. J. RFLP for the human LDL receptor gene (LDLR):BstEII.Nucl. Acid. Res. 15 (1987) 4702

    Google Scholar 

  • Yamamoto, T., Davis, L. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L. and Russell, D. W. The human LDL-receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA.Cell 39 (1984) 27–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphries, S., Taylor, R., Jeenah, M. et al. The use of recombinant DNA techniques for the diagnosis of familial hypercholesterolaemia. J Inherit Metab Dis 11 (Suppl 1), 33–44 (1988). https://doi.org/10.1007/BF01800569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01800569

Keywords

Navigation