Skip to main content
Log in

Effect of the X-linkedHyp mutation onN-ethylmaleimide labelling of proteins in renal brush border membrane

  • Published:
Journal of Inherited Metabolic Disease

Summary

The X-linked dominant mutation, hypophosphataemia (gene symbol,Hyp) is expressed in the laboratory mouse as deficient phosphate transport at the renal brush border membrane (BBM) of proximal nephron. In an attempt to identify proteins which mediate phosphate transport, we treated renal BBM vesicles prepared from mutant male (Hyp/Y) and normal male (+/Y) littermates, with radiolabelledN-ethylmaleimide (NEM), in the presence or absence of arsenate which is a competitive inhibitor of phosphate transport. Polyacrylamide gel electrophoresis revealed labelling of membrane proteins in the 40–45 kDa range; addition of arsenate during NEM treatment inhibited labelling. These findings indicate a 40–45 kDa protein as a component of the renal BBM phosphate transport system(s). We found no difference between protein labelling of the renal BBM fromHyp/Y and +/Y mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beliveau, R., Brunette, M. G., and Strevey, J. Characterization of phosphate binding by alkaline phosphatase in rat kidney brush border membrane.Pflügers Arch. 398 (1983) 227–232

    Google Scholar 

  • Booth, A. G. and Kenny, A. J. A rapid method for the preparation of microvilli rabbit kidney.Biochem. J. 142 (1974) 575–581

    Google Scholar 

  • Booth, A. G. and Kenny, A. J. Proteins of the kidney microvillus membrane.Biochem. J. 159 (1976) 395–407

    Google Scholar 

  • Eicher, E. M., Southard, J. L., Scriver, C. R. and Glorieux, F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets.Proc. Natl. Acad. Sci. USA 73 (1976) 4667–4671

    Google Scholar 

  • Engström, L. Studies on calf-intestinal alkaline phosphatase II.Biochim. Biophys. Acta 52 (1961) 49–59

    Google Scholar 

  • Fox, C. P. and Kennedy, E. P. Specific labelling and partial purification of the M protein, a component of the β-galactoside transport system ofEscherichia Coli.Biochemistry 54 (1965) 891–899

    Google Scholar 

  • Friedmann, E., Marrian, D. H. and Simon-Reuss, I. Antimitotic action of maleimide and related substances.Br. J. Pharmacol. 4 (1949) 105–108

    Google Scholar 

  • Haase, W., Schafer, A., Murer, H. and Kinne, R. Studies on the orientation of brush border membrane vesicles.Biochem. J. 172 (1978) 57–62

    Google Scholar 

  • Hoffman, N., Thees, M. and Kinne, R. Phosphate transport by isolated renal brush border vesicles.Pflügers Arch. 362 (1976) 147–156

    Google Scholar 

  • Kempson, S. A. and Dousa, T. P. Phosphate transport across renal cortical brush-border membrane vesicles from rats stabilized on a normal, high or low phosphate diet.Life Sci. 24 (1979) 881–888

    Google Scholar 

  • Kessler, R. J., Vaughn, D. A. and Fannestil, D. D. Phosphate-binding proteolipid from brush border.J. Biol. Chem. 257 (1982) 14311–14317

    Google Scholar 

  • Kessler, R. J., Vaughn, D. A. and Tenenhouse, H. S. Recovery and phosphate binding activity of phosphorin is not reduced in renal brush border membranes inHyp mice.J. Bone Min. Res. 1 (1986) 105

    Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227 (1970) 680–685

    Google Scholar 

  • Lemaire, J. and Maestracci, D. Labelling of a glucose binding protein in the rabbit intestinal brush border membrane.Can. J. Physiol. Pharmacol. 56 (1978) 760–770

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193 (1951) 265–275

    Google Scholar 

  • Lyon, M. F., Scriver, C. R., Baker, L. R. I., Deol, M., Tenenhouse, H. S., Kronick, J. and Mandla, S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse: implications for man.Am. J. Hum. Genet. 37 (1986) A12

    Google Scholar 

  • Newrock, K. M. and Raff, R. A. Polar lobe specific regulation of translation in embryos ofIlyanassa obsoleta.Dev. Biol. 42 (1975) 242–261

    Google Scholar 

  • Noronha-Blob, L. Effects of papain on enzymic and transport functions of isolated rabbit renal brush border membrane vesicles.Fed. Proc. 38 (1979) 838

    Google Scholar 

  • Peerce, B. E. and Wright, E. M. Sodium-induced conformational changes in the glucose transporter of intestinal brush borders.J. Biol. Chem. 259 (1984) 14105–14112

    Google Scholar 

  • Petitclerc, C. and Plante, G. E. Renal transport of phosphate: role of alkaline phosphatase.Can. J. Physiol. Pharmacol. 59 (1981) 311–323

    Google Scholar 

  • Poirée, J. C., Mengual, R. and Sudaka, P. Identification of a protein component of horse kidney brush borderD-glucose transport system.Biochem. Biophys. Res. Commun. 90 (1979) 1387–1392

    Google Scholar 

  • Rohn, R., Biber, J., Haase, W. and Murer, H. Effects of protease treatment on enzyme content, protein content and transport function of brush border membranes isolated from rat small intestine and kidney cortex.Mol. Physiol. 3 (1983) 3–18

    Google Scholar 

  • Rothstein, A., Cabantchik, Z. I. and Knauf, P. Mechanism of anion transport in red blood cells: role of membrane proteins.Fed. Proc. 35 (1976) 3–10

    Google Scholar 

  • Scriver, C. R. and Tenenhouse, H. S. On the heritability of rickets, a common disease (Mendel, Mammals and Phosphate).Johns Hopkins Med. J. 149 (1981) 179–187

    Google Scholar 

  • Tenenhouse, H. S. and Scriver, C. R. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model).Can. J. Biochem. 56 (1978) 640–646

    Google Scholar 

  • Tenenhouse, H. S. and Scriver, C. R. Renal brush-border membrane adaptation to phosphorus deprivation in theHyp mouse.Nature 281 (1979a) 225–227

    Google Scholar 

  • Tenenhouse, H. S. and Scriver, C. R. Renal adaptation to phosphate deprivation in theHyp mouse with X-linked hypophosphatemia.Can. J. Biochem. 57 (1979b) 938–944

    Google Scholar 

  • Tenenhouse, H. S., Scriver, C. R., McInnes, R. R. and Glorieux, F. H. Renal handling of phosphatein vivo andin vitro by the X-linked hypophosphatemic male mouse: Evidence for a defect in the brush border membrane.Kidney Int. 14 (1978) 236–244

    Google Scholar 

  • Tenenhouse, H. S., Scriver, C. R. and Vizel, E. J. Alkaline phosphatase activity does not mediate phosphate transport in the renal cortical brush-border membrane.Biochem. J. 190 (1980) 473–476

    Google Scholar 

  • Thomas, L. Isolation of N-ethylmaleimide-labelled-phlorizin-sensitiveD-glucose binding protein of brush border membrane from rat kidney cortex.Biochim. Biophys. Acta 291 (1973) 454–464

    Google Scholar 

  • Vizel, E. J. MSc Thesis, McGill University, 1984

  • Yusufi, A. N. K., Low, M. G., Turner, S. T. and Dousa, T. P. Selective removal of alkaline phosphatase from renal brush-border membrane and sodium-dependent brush-border membrane transport.J. Biol. Chem. 258 (1983) 5956–5701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vizel, E.J., Tenenhouse, H.S. & Scriver, C.R. Effect of the X-linkedHyp mutation onN-ethylmaleimide labelling of proteins in renal brush border membrane. J Inherit Metab Dis 10, 243–252 (1987). https://doi.org/10.1007/BF01800070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01800070

Keywords

Navigation