Advertisement

Journal of Inherited Metabolic Disease

, Volume 10, Issue 2, pp 128–134 | Cite as

Localization of pipecolic acid metabolism in rat liver peroxisomes: Probable explanation for hyperpipecolataemia in Zellweger syndrome

  • J. M. F. Trijbels
  • L. A. H. Monnens
  • G. Melis
  • M. van den Broekvan Essen
  • M. Bruckwilder
Article

Abstract

The metabolism of [14C]pipecolic acid was studied in peroxisomal fractions of rat liver obtained by density gradient centrifugation in Percoll. The production rate of [14CO2] was used to measure the metabolic activity of the fractions towards [14C]carboxypipecolic acid as a substrate. It was shown that this activity was located in the peroxisomal fractions by comparison with the peroxisomal marker enzyme urate oxidase (EC 1.7.3.3). The process was markedly elevated by the addition of FAD. The apparentKm forDL-pipecolic acid was found to be 1.2 mmol L−1. Addition of ATP (1 mmol L−1) did not influence the decarboxylation rate of pipecolic acid. These results might explain the defective metabolism of pipecolic acid in patients with Zellweger syndrome who are lacking peroxisomes.

Keywords

Production Rate Metabolic Activity Density Gradient Acid Metabolism Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakkeren, J. A. J. M., Monnens, L. A. H., Trijbels, J. M. F. and Maas, J. M. Serum very long chain fatty acid pattern in Zellweger syndrome.Clin. Chim. Acta 138 (1984) 325–331Google Scholar
  2. Bauduin, P. In Fleischer, S. and Packer, L. (eds.),Methods in Enzymology. Academic Press, New York, 1974, pp. 356–375Google Scholar
  3. Brown, F. R., McAdams, A. J., Cummins, J. W., Konkol, R., Singh, I., Moser, A. B. and Moser, H. W. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids.Johns Hopkins Med. J. 151 (1982) 344–361Google Scholar
  4. Danks, D. M., Tippett, P., Adams, C. and Campbell, P. Cerebro-hepato-renal syndrome of Zellweger.J. Pediatr. 86 (1975) 382–387Google Scholar
  5. Goldfischer, S., Moore, C. L., Johnson, A. B., Spiro, A. J., Valsamis, M. P., Wisniewski, H. K., Ritch, R. H., Norton, W. T., Rapin, I. and Gartner, L. M. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome.Science 182 (1973) 62–64Google Scholar
  6. Harper, A. E. In Bergmeyer, H. U. (ed.),Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, 1962, pp. 788–792Google Scholar
  7. Heymans, H., Schutgens, R., Tan, R., van den Bosch, H. and Borst, P. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome).Nature 306 (1983) 69–70Google Scholar
  8. Kelley, R. I. and Moser, H. W. Hyperpipecolic acidemia in neonatal adrenoleukodystrophy.Am. J. Med. Genet. 19 (1984) 791–795Google Scholar
  9. Mannaerts, G. P., Van Veldhoven, P., Van Broekhoven, A., Vandebroek, G. and Debeer, L. J. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane.Biochem. J. 204 (1982) 17–23Google Scholar
  10. Neat, C. E., Thomassen, M. S. and Osmundsen, H. Induction of peroxisomal β-oxidation in rat liver by high fat diets.Biochem. J. 186 (1980) 369–371Google Scholar
  11. Pedersen, J. L. and Gustafsson, J. Conversion of 3α,7α,12α-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes.Febs Lett. 121 (1980) 345–348Google Scholar
  12. Poll-Thé, B. T., Saudubray, J. M., Ogier, H., Schutgens, R. B. H., Wanders, R. J. A., Schrakamp, G., van den Bosch, H., Trijbels, J. M. F., Poulos, A., Moser, H. W., van Eldere, J. and Eyssen, H. J. Infantile Refsum's disease: biochemical findings suggesting a generalized dysfunction of peroxisomes.J. Inher. Metab. Dis. 9 (1986) 169–174Google Scholar
  13. Praetorius, E. In Bergmeyer, H. U. (ed.),Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, 1962, pp. 500–504Google Scholar
  14. Srere, R. A. In Löwenstein, J. M. (ed.),Methods in Enzymology. Academic Press, London, 1969, pp. 3–11Google Scholar
  15. Trijbels, J. M. F., Berden, J. A., Monnens, L. A. H., Willems, J. L., Janssen, A. J. M., Schutgens, R. B. H. and van den Broek-van Essen, M. Biochemical studies in the liver and muscle of patients with Zellweger Syndrome.Pediatr. Res. 17 (1983) 514–517Google Scholar
  16. Trijbels, J. M. F., Monnens, L. A. H., Bakkeren, J. A. J. M., Van Raay-Selten, A. H. J. and Corstiaensen, J. M. B. Biochemical studies in the cerebro-hepato-renal syndrome of Zellweger: a disturbance in the metabolism of pipecolic acid.J. Inher. Metab. Dis. 2 (1979) 39–42Google Scholar
  17. Willems, J. L., de Kort, A. F. M., Trijbels, J. M. F., Monnens, L. A. H. and Veerkamp, J. H. Determination of pyruvate oxidation rate and citric acid cycle activity in intact human leucocytes and fibroblasts.Clin. Chem. 24 (1978) 200–203Google Scholar
  18. Zaar, K., Angermüller, S., Völkl, A. and Fahimi, H. D. Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger's cerebro-hepato-renal Syndrome (CHRS).Exp. Cell Res. 164 (1986) 267–271Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1987

Authors and Affiliations

  • J. M. F. Trijbels
    • 1
  • L. A. H. Monnens
    • 1
  • G. Melis
    • 1
  • M. van den Broekvan Essen
    • 1
  • M. Bruckwilder
    • 1
  1. 1.Department of PaediatricsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations