Journal of Inherited Metabolic Disease

, Volume 10, Issue 4, pp 359–366 | Cite as

Hyperammonaemia and lactic acidosis in a patient with pyruvate dehydrogenase deficiency

  • G. K. Brown
  • R. D. Scholem
  • S. M. Hunt
  • J. R. Harrison
  • A. C. Pollard


A patient who presented in the newborn period with severe lactic acidosis and hyperammonaemia has been shown to have a specific defect in the pyruvate dehydrogenase complex. The secondary inhibition of ureagenesis in this patient appears to be due to a functional deficiency of carbamyl phosphate synthetase.


Public Health Phosphate Internal Medicine Pyruvate Metabolic Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, T., Tanimura, A. and Asahina, M. A colorimetric determination of orotic acid.J. Vitamin. 9 (1963) 217–226Google Scholar
  2. Atkin, B. M., Utter, M. F. and Weinberg, M. B. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase activity in leukocytes and fibroblasts from a patient with pyruvate carboxylase deficiency.Pediatr. Res. 13 (1979) 38–43Google Scholar
  3. Charpentier, C., Tetau, J. M., Ogier, H., Saudubray, J. M., Coude, F. X. and Lemonnier, A. Amino acid profile in pyruvate carboxylase deficiency: comparison with some other metabolic disorders.J. Inher. Metab. Dis. 5 Suppl. 1 (1982) 11–12Google Scholar
  4. Chen, T. R. In situ detection of Mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain.Exp. Cell Res. 104 (1977) 255–262Google Scholar
  5. Coude, F. X., Sweetman, L. and Nyhan, W. L. Inhibition by propionyl coenzyme A ofN-acetylglutamate synthetase in rat liver mitochondria.J. Clin. Invest. 64 (1979) 1544–1551Google Scholar
  6. Coude, F. X., Ogier, H., Marsac, C., Munnich, A., Charpentier, C. and Saudubray, J. M. Secondary citrullinaemia with hyperammonaemia in four neonatal cases of pyruvate carboxylase deficiency.Pediatrics 68 (1981) 914Google Scholar
  7. Dahl, H-H. M., Hunt, S. M., Hutchison, W. M. and Brown, G. K. The human pyruvate dehydrogenase complex: isolation of cDNA clones for the E1α subunit, sequence analysis and characterization of the mRNA.J. Biol. Chem. (1987) In pressGoogle Scholar
  8. De Marcucci, O. L., Hunter, A. and Lindsay, J. G. Low immunogenicity of the common lipoamide dehydrogenase subunit (E3) of mammalian pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme complexes.Biochem. J. 226 (1985) 509–517Google Scholar
  9. Ho, L., Hu, C-W. C., Packman, S. and Patel, M. S. Deficiency of the pyruvate dehydrogenase component in pyruvate dehydrogenase complex-deficient human fibroblasts.J. Clin. Invest. 78 (1986) 844–847Google Scholar
  10. Landes, R. D., Avery, G. B., Walker, F. A. and Hsia, Y. E. Propionyl CoA carboxylase deficiency (propionic acidaemia): another cause of hyperammonaemia.Pediatr. Res. 6 (1972) 394Google Scholar
  11. McCormick, K., Viscardi, R. M. and Robinson, B. Pyruvate dehydrogenase deficiency with lactic acidosis and hyperammonaemia: response to dichloroacetate and benzoate.Pediatr. Res. 18 (1984) 297AGoogle Scholar
  12. Matsuo, M., Ookita, K., Takemine, H., Koike, K. and Koike, M. Fatal case of pyruvate dehydrogenase deficiency.Acta Paediatr. Scand. 74 (1985) 140–142Google Scholar
  13. Metzenberg, R. L., Marshall, M. and Cohen, P. P. Carbamyl phosphate synthetase: studies on the mechanism of action.J. Biol. Chem. 233 (1958) 1560–1564Google Scholar
  14. Packman, S., Mahoney, M. J., Tanaka, K. and Hsia, Y. E. Severe hyperammonaemia in a newborn infant with methylmalonyl CoA mutase deficiency.J. Pediatr. 92 (1978) 769–771Google Scholar
  15. Rahmatullah, M., Jilka, J. M. and Roche, T. E. Correspondence of stimulation of kidney pyruvate dehydrogenase (PDHa) kinase by malonyl CoA with acylation of protein components.Fed. Proc. 43 (1984) 1785Google Scholar
  16. Robinson, B. H., Taylor, J. and Sherwood, W. G. The genetic heterogeneity of lactic acidosis: occurrence of recognisable inborn errors of metabolism in a paediatric population with lactic acidosis.Pediatr. Res. 14 (1980) 956–962Google Scholar
  17. Robinson, B. H. and Sherwood, W. G. Lactic acidaemia.J. Inher. Metab. Dis. 7 Suppl. 1 (1984) 69–73Google Scholar
  18. Saudubray, J. M., Marsac, C., Charpentier, C., Cathelineau, L., Besson Leaud, M. and Leroux, P. Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings.Acta Paediatr. Scand. 65 (1976) 717–724Google Scholar
  19. Schofield, P. J., Griffiths, L. R., Rogers, S. H. and Wise, G. An improved method for the assay of platelet pyruvate dehydrogenase.Clin. Chim. Acta 108 (1980) 219–227Google Scholar
  20. Stewart, P. M. and Walser, M. Failure of the normal ureagenic response to amino acids in organic acid-loaded rats.J. Clin. Invest. 66 (1980) 484–492Google Scholar
  21. Wicking, C. A., Scholem, R. D., Hunt, S. M. and Brown, G. K. Immunochemical analysis of normal and mutant forms of human pyruvate dehydrogenase.Biochem. J. 239 (1986) 89–96Google Scholar
  22. Zuurendonk, P. F. and Tager, J. M. Rapid separation of particulate components and soluble cytoplasm of isolated rat liver cells.Biochim. Biophys. Acta 333 (1974) 393–399Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1987

Authors and Affiliations

  • G. K. Brown
    • 1
    • 2
  • R. D. Scholem
    • 2
  • S. M. Hunt
    • 2
  • J. R. Harrison
    • 3
  • A. C. Pollard
    • 3
  1. 1.Department of PaediatricsUniversity of MelbourneAustria
  2. 2.Murdoch Institute for Research into Birth DefectsRoyal Children's HospitalMelbourne
  3. 3.Department of Chemical PathologyAdelaide Children's HospitalAdelaideAustralia

Personalised recommendations