Skip to main content
Log in

Dietary problems of phenylketonuria: Effect on CNS transmitters and their possible role in behaviour and neuropsychological function

  • Clinical Symposium — Phenylketonuria SSIEM 23RD Annual Symposium, Liverpool 1985
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Thirty years ago it was observed that the synthesis of serotonin, dopamine and norepinephrine was impaired in untreated phenylketonuria (PKU) as judged either by a decreased concentration in the blood or decreased excretion in the urine of these neurotransmitters, or of their meta10545tes, 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA). Fifteen years later, when early treatment of PKU with a phenylalanine restricted diet was routinely introduced, an inverse relationship was found between phenylalanine levels and the urinary excretion of dopamine and serotonin. An inverse relationship between blood phenylalanine levels and cerebrospinal fluid (CSF) concentrations of HVA and 5-HIAA has repeatedly been reported during the past 10 years. Recently, the effect of the discontinuation of diet in PKU on the synthesis of dopamine, norepinephrine and serotonin has been examined, and the possible relationship between low levels of these neurotransmitters and impaired performance on neuropsychological tests has been evaluated. In some PKU patients the performance on neuropsychological tests of higher integrative function is impaired after discontinuation of diet, especially when blood phenylalanine values exceed 1200 µmol/L, and the patients often complain of lack of concentration and emotional instability. When these patients return to a ‘relaxed’ phenyalanine restricted, tyrosine enriched diet, the impaired neuropsychological and behavioural functions appear to be reversible. One mechanism may involve an impaired synthesis of dopamine and serotonin, as the improvement is accompanied by an increase in dopamine and serotonin excretion and a significant increase in CSF concentrations of HVA and 5-HIAA. Quite recently it has been observed that supplementation of a free diet with tyrosine (approximately 150 mg/kg) seemed to improve personality, behaviour, reaction time or reaction time variability in patients off diet. Plasma tyrosine and CSF HVA concentrations increased significantly. Plasma phenylalanine levels remained high (>1200 µmol/L). Supplementation of a normal diet with tyrosine and tryptophan may prevent mental and neuropsychological dysfunction following diet discontinuation in PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, M. D. and Robinson, K. S. On the excretion of indole derivatives in phenyl-ketonuria.Arch. Biochem. 52 (1954) 287–288

    Article  PubMed  CAS  Google Scholar 

  • Berry, H. K., Bofinger, M. K., Melanie, M. H., Philips, P. J. and Guilfoile, M. B. Reduction of cerebrospinal fluid phenylalanine after oral administration of valine, isoleucine, and leucine.Pediatr. Res. 16 (1982) 751–755

    Article  PubMed  CAS  Google Scholar 

  • Brunner, R. L., Jordan, M. K. and Berry, H. K. Early treated phenylketonuria: neuropsychologic consequences.J. Pediatr. 102 (1983) 831–835

    Article  PubMed  CAS  Google Scholar 

  • Butler, L. J., O'Flynn, M. E., Seifert, W. E. and Howell, R. R. Neurotransmitter defects and treatment of disorders of hyperphenylalaninemia.J. Pediatr. 98 (1981) 729–733

    Article  PubMed  CAS  Google Scholar 

  • Curtius, H. C., Vollmin, J. A. and Baerlocher, K. The use of deuterated phenylalanine for the elucidation of the phenylalanine-tyrosine meta10545sm.Clin. Chim. Acta 37 (1972) 277–285

    Article  PubMed  CAS  Google Scholar 

  • Curtius, H. C., Wiederwieser, A., Viscontini, M., Leimbacher, W., Wegman, H., Blehova, B, Rey, F., Schaut, J. and Schmidt, H. Serotonin and dopamine synthesis in phenylketonuria.Adv. Exp. Med. Biol. 133 (1981) 277–291

    PubMed  CAS  Google Scholar 

  • Katz, I., Lloyd, R. and Kaufman, S. Studies on phenylalanine and tyrosine hydroxylation by rat brain tyrosine hydroxylase.Biochem. Biophys. Acta 445 (1976) 567–578

    PubMed  CAS  Google Scholar 

  • Krause, W., Halminski, M., McDonald, L., Dembure, P., Salvo, R., Freides, D. and Elsas, L. Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria.J. Clin. Invest. 75 (1985) 40–48

    PubMed  CAS  Google Scholar 

  • Lou, H. C. Large doses of tryptophan and tyrosine as potential therapeutical alternative to dietary phenylalanine restriction in phenylketonuria.Lancet 1 (1985) 151

    Google Scholar 

  • Lou, H. C., Güttler, F., Lykkelund, C., Bruhn, P. and Neiderweiser. A. Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment for phenylketonuria in adolescents.Eur. J. Pediatr. 144 (1985) 17–20

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg, W., Jéquier, E. and Sjoerdsma, A. Tryptophan hydroxylation in mammalian systems.Adv. Pharmacol. 6A (1968) 21–35

    Article  Google Scholar 

  • McKean, C. M. The effects of high phenylalanine concentrations on serotonin and catecholamine meta10545sm in the human brain.Brain Res. 47 (1972) 469–476

    Article  PubMed  CAS  Google Scholar 

  • McSwigan, J. D., Vorhees, C. V., Brunner, R. L., Butcher, R. E. and Berry, H. K. Amelioration of maze deficits from induced hyperphenylalaninemia in adult rats using valine, isoleucine, and leucine.Behav. Neur. Biology 33 (1981) 378–384

    Article  CAS  Google Scholar 

  • Nadler, H. L. and Hsia, D. Y. Y. Epinephrine meta10545sm in phenylketonuria.Proc. Soc. Exp. Biol. Med. 107 (1961) 721–722

    PubMed  CAS  Google Scholar 

  • Paere, C. M., Sandler, M. and Stacey, R. S. Decreased 5-hydroxytryptamine deficiency in phenylketonuria.Lancet 1 (1957) 551–553

    Article  Google Scholar 

  • Paere, C. M., Sandler, M. and Stacey, R. S. Decreased 5-hydroxytryptophan decarboxylase activity in phenylketonuria.Lancet 2 (1958) 1099–1101

    Article  Google Scholar 

  • Peterson, N. A., Shah, S. N., Raghupathy, E. and Riioads, R. Presynaptic tyrosine availability in the phenylketonuric brain: a hypothetical evaluation.Brain Res. 272 (1983) 189–193

    Article  PubMed  CAS  Google Scholar 

  • Pratt, O. E. Transport inhibition in the pathology of phenylketonuria and other inherited meta10545c diseases.J. Inher. Metab. Dis. 5 Suppl. 2 (1982) 75–81

    Article  CAS  Google Scholar 

  • Sandler, M. Inborn errors and disturbances of central neurotransmission (with special reference to phenylketonuria).J. Inher. Metab. Dis. 5 Suppl. 2 (1982) 65–70

    Article  CAS  Google Scholar 

  • Tong, J. H. and Kaufman, S. Tryptophan hydroxylase: purification and some properties of the enzyme from rabbit hindbrain.J. Biol. Chem. 250 (1975) 4152–4158

    PubMed  CAS  Google Scholar 

  • Udenfriend, S. The primary enzymatic defect in phenylketonuria and how it may influence the central nervous system. In Anderson, J. A. and Swaiman, K. F. (eds).Phenylketonuria and Allied Meta10545c Diseases. Dept. of Health, Education and Welfare, Washington DC, 1967, pp. 1–8

    Google Scholar 

  • Waisbren, S. E., Schnell, R. R. and Levy, H. L. Diet termination in children with PKU. A review of psychological assessments used to determine outcome.J. Inher. Metab. Dis. 3 (1980) 149–153

    Article  PubMed  CAS  Google Scholar 

  • Weil-Malherbe. Blood adrenaline and intelligence.J. Ment. Sci. 101 (1955) 733–745

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güttler, F., Lou, H. Dietary problems of phenylketonuria: Effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9 (Suppl 2), 169–177 (1986). https://doi.org/10.1007/BF01799701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01799701

Keywords

Navigation