Journal of Inherited Metabolic Disease

, Volume 15, Issue 4, pp 645–664 | Cite as

Adrenoleukodystrophy: Phenotypic variability and implications for therapy

  • H. W. Moser
  • A. B. Moser
  • K. D. Smith
  • A. Bergin
  • J. Borel
  • J. Shankroff
  • O. C. Stine
  • C. Merette
  • J. Ott
  • W. Krivit
  • E. Shapiro
The X Chromosome

Summary

X-linked adrenoleukodystrophy (ALD) is a relatively common disorder that shows a great deal of phenotypic variability. Approximately half of the patients have the rapidly progressive childhood cerebral form that is associated with an inflammatory response in brain and leads to total disability or death during the first decade. Twenty five per cent or more of the patients have adrenomyeloneuropathy (AMN), a form that progresses slowly, involves the spinal cord mainly, shows little or no inflammatory response, manifests in adulthood, and is compatible with a near-normal life span. The two forms of the disease occur frequently within the same kindreds and nuclear families. Segregation analysis based on 3862 individuals in 89 kindreds points to the existence of an autosomal modifier locus with a likelihood ratio of 20:1. In addition, we present preliminary results of three types of therapy. Two hundred and four patients have received a dietary regimen that combines the administration of oils containing mono-unsaturated fatty acids (oleic and erucic) with the restricted intake of very long-chain fatty acids. This regimen normalizes the levels of satured very long-chain fatty acids in plasma within 4 weeks. It appears to improve peripheral nerve function in patients with AMN, and a large-scale trial is in progress to determine whether it can prevent the onset of neurological involvement in patients who have the biochemical abnormality of ALD but are neurologically intact. We report early results of bone marrow transplantation in 14 patients. There is encouraging but still preliminary evidence that transplantation can arrest the progression of the disease in patients with mild neurological involvement. There is urgent need to develop methods to combat the rapid progression of the cerebral forms of the disease, which so far has resisted therapeutic intervention, including immunosuppression or the administration of immunoglobulin.

Keywords

Bone Marrow Transplantation Modifier Locus Segregation Analysis Nuclear Family Nerve Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoku Y, Koike F, Othsuka Y et al (1991) Adrenoleukodystrophy: A correlation between saturated very long chain fatty acids in mononuclear cells and phenotype.Ann Neurol 30: 101–103.Google Scholar
  2. Aubourg P, Sack GH, Meyers DA, Lease JJ, Moser HW (1987) Linkage of adrenoleukodystrophy to a polymorphic DNA probe.Ann Neurol 21: 240–249.Google Scholar
  3. Aubourg P, Sack GH, Moser HW (1988) Frequent alteration of visual pigment genes in adrenoleukodystrophy.Am J Hum Genet 42: 408–413.Google Scholar
  4. Aubourg P, Sellier N, Chaussain JL, Kalifa G (1989) MRI detects cerebral involvement in neurologically asymptomatic patients with adrenoleukodystrophy.Neurology 39: 1619–1621.Google Scholar
  5. Aubourg P, Blanche S, Jambaque I et al (1990a) Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation.N Engl J Med 322: 1860–1866.Google Scholar
  6. Aubourg PB, Feil R, Guidoux S et al (1990b) The red-green visual pigment gene region in adrenoleukodystrophy.Am J Hum Genet 46: 459–469.Google Scholar
  7. Bebin EM, Gomez MR, Forbes GS, Moser HW (1990) Cerebral lesions of adrenoleukodystrophy remain static and patients asymptomatic during dietary therapy.Ann Neurol 28: 436a.Google Scholar
  8. Bernheimer H, Budka H, Muller P (1983) Brain tissue immunoglobulins in adrenoleukodystrophy: A comparison with multiple sclerosis and systemic lupus erythematosus.Acta Neuropathol (Berlin) 59: 95–102.Google Scholar
  9. Boles DJ, Craft DA, Padgett DA, Loria RM, Rizzo WB (1991) Clinical variation in X-linked adrenoleukodystrophy — Fatty acid and lipid metabolism in cultured fibroblasts.Biochem Med Metab Biol 45: 74–91.Google Scholar
  10. Borel J, Cohen J (1990)ALD/AMN Diet Cookbook. Baltimore: United Leukodystrophy Foundation and The Kennedy Institute.Google Scholar
  11. Brown FR III, Van Duyn MA, Moser AB et al (1982) Adrenoleukodystrophy: Effects of dietary restriction of very long chain fatty acids and of administration of carnitine and clofibrate on clinical status and plasma fatty acids.Johns Hopkins Med J 151: 164–172.Google Scholar
  12. Cavanagh JB (1964) The significance of the ‘dying-back’ process in human and experimental neurological diseases.Int Rev Exp Pathol 3: 219–267.Google Scholar
  13. Edwards AWF (1972)Likelihood. New York: Cambridge University Press.Google Scholar
  14. Edwin C, Speedie L, Naidie S, Moser HW (1990) Cognitive impairment in adult-onset adrenoleukodystrophy.Mol Chem Neuropath 12: 167–176.Google Scholar
  15. Friedman Z, Lamberth EL, Stahlman MT, Oates JA (1977) Platelet dysfunction in the neonate with essential fatty acid deficiency.J Pediatr 90: 439–443.Google Scholar
  16. Goodin DS (1991) The use of immunosuppressive agents in the treatment of multiple sclerosis: A critical review.Neurology 41: 980–985.Google Scholar
  17. Griffin DE, Moser HW, Mendoza Q, Moench T, O'Toole S, Moser AB (1985) Identification of the inflammatory cells in the nervous system of patients with adrenoleukodystrophy.Ann Neurol 18: 660–664.Google Scholar
  18. Griffin JW, Goren E, Schaumburg H, Engel WK, Loriaux L (1977) Adrenomyeloneuropathy: A probable variant of adrenoleukodystrophy.Neurology 27: 1107–1113.Google Scholar
  19. Holman RT (1960) The ratio of trienoic-tetranoic acids in tissue lipids as a measure of essential fatty acid requirement.J Nutr 70: 405.Google Scholar
  20. Kishimoto Y, Moser HW, Kawamura N, Platt M, Pallante B, Fenselau C (1980) Evidence that abnormal very long chain fatty acids of brain cholesterol esters are of exogenous origin.Biochem Biophys Res Commun 96: 69–76.Google Scholar
  21. Knazek RA, Rizzo WB, Schulman JD, Dave JR (1983) Membrane microviscosity is increased in the erythrocytes of patients with adrenoleukodystrophy and adrenomyeloneuropathy.J Clin Invest 72: 245–248.Google Scholar
  22. Kurtzke JF (1986) Neuroepidemiology. Part II: Assessment of therapeutic trials.Ann Neurol 19: 311–319.Google Scholar
  23. Lazo O, Contreras M, Hashmi M, Stanley W, Irazu C, Singh I (1988) Peroxisomal lignoceroyl-CoA ligas deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy.Proc Natl Acad Sci USA 85: 7647–7651.Google Scholar
  24. McKhann GM (1989) The trials of clinical trials.Arch Neurol 46: 611–614.Google Scholar
  25. Migeon BR, Moser HW, Moser AB, Axelman J, Sillence D, Norum RA (1981) Adrenoleukodystrophy: Evidence for X-linkage, inactivation and selection favoring the mutant allele in heterozygous cells.Proc Natl Acad Sci USA 78: 5066–5070.Google Scholar
  26. Miike T, Taku K, Tamura T et al (1989) Clinical improvement of adrenoleukodystrophy following intravenous gammaglobulin therapy.Brain Dev 11: 134–137.Google Scholar
  27. Moser HW, Moser AB (1989) X-linked adrenoleukodystrophy. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease. New York: McGraw Hill, 1511–1532.Google Scholar
  28. Moser HW, Moser AB (1990) measurements of saturated very long chain fatty acids in plasma. In Hommes F, ed.Techniques in Diagnostic Human Biochemical Genetics. New York: Wiley-Liss, 117–191.Google Scholar
  29. Moser HW, Moser AB, Frayer KK et al (1981) Adrenoleukodystrophy: Increased plasma content of saturated very long chain fatty acids.Neurology 31: 1241–1249.Google Scholar
  30. Moser HW, Tutschka PJ, Brown FR III et al (1984) Bone marrow transplant in adrenoleukodystrophy.Neurology 34: 1410–1417.Google Scholar
  31. Moser AB, Borel J, Odone A et al (1987) A new dietary therapy for adrenoleukodystrophy: Biochemical and preliminary clinical results in 36 patients.Ann Neurol 21: 240–249.Google Scholar
  32. Moser AB, Moser HW, Della Cioppa G, Dorsey FC (1988) Ganglioside administration reduces plasma C26:0 levels in adrenoleukodystrophy and adrenomyeloneuropathy. Results of clinical trials.Ann Neurol 24: 148A.Google Scholar
  33. Moser HW, Aubourg P, Cornblath D et al (1991a). The therapy of X-linked adrenoleukodystrophy. In Desnick RJ, ed.Treatment of Genetic Diseases. New York: Churchill Livingstone, 111–129.Google Scholar
  34. Moser HW, Bergin A, Naidu S, Ladenson PW (1991b) Adrenoleukodystrophy: new aspects of adrenal cortical disease. In Nelson DH, ed.Endocrinology and Metabolism Clinics of North America: New Aspects of Adrenal Cortical Disease. Philadelphia: W.B. Saunders, 297–318.Google Scholar
  35. Moser HW, Moser AB, Naidu S, Bergin A (1991c) Clinical aspects of adrenoleukodystrophy and adrenomyeloneuropathy.Dev Neurosci 13: 254–261.Google Scholar
  36. Murphy JV, Marquardt KM, Moser HW, Van Duyn MA (1982) Treatment of adrenoleukodystrophy by diet and plasmapheresis.Ann Neurol 12: 220.Google Scholar
  37. Naidu S, Bresnan MJ, Griffin D, O'Toole S, Moser HW (1988) Intensive immunosuppression fails to alter neurological progression in childhood adrenoleukodystrophy.Arch Neurol 45: 846–848.Google Scholar
  38. Powers JM (1985) Adrenoleukodystrophy (adreno-testiculo-leuko-myelo-neuropathic-complex).Clin Neuropathol 4: 181–199.Google Scholar
  39. Powers JM, Schaumburg HH, Johnson AB, Raine CS (1980) A correlative study of the adrenal cortex in adrenoleukodystrophy: Evidence for a fatal intoxication with very long chain fatty acids.Invest Cell Pathol 3: 353–376.Google Scholar
  40. Rizzo WB, Watkins PA, Phillips MW, Cranin D, Campbell B, Avigan J (1986) Adrenoleukodystrophy: Oleic acid lowers fibroblast saturated C22–C26 fatty acids.Neurology 36: 357–361.Google Scholar
  41. Rizzo WB, Phillips MW, Dammann AL, Leshner RY, Jennings SVK (1987) Adrenoleukodystrophy: Dietary oleic acid lowers hexacosanoate levels.Ann Neurol 21: 232–239.Google Scholar
  42. Rizzo WB, Leshner RT, Odone A et al (1989) Dietary erucic acid therapy for X-linked adrenoleukodystrophy.Neurology 39: 1415–1422.Google Scholar
  43. Sack GH, Raven MB, Moser HW (1989) Color vision defects in adrenoleukodystrophy.Am J Hum Genet 44: 794–798.Google Scholar
  44. Sadeghi-Nejad A, Senior B (1990) Adrenomyeloneuropathy presenting as Addison's disease in childhood.N Engl J Med 322: 13–16.Google Scholar
  45. Schaumburg HH, Powers JM, Raine CS, Suzuki K, Richardson EP (1975) Adrenoleukodystrophy: A clinical and pathological study of 17 cases.Arch Neurol 33: 577–591.Google Scholar
  46. Singh I, Moser AB, Moser HW, Kishimoto Y (1984) Adrenoleukodystrophy: Impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts and amniocytes.Pediatr Res 18: 286–290.Google Scholar
  47. Steinberg D (1989). Refsum disease. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease. New York: McGraw Hill, 1533–1550.Google Scholar
  48. Stumpf DA, Hayward A, Haas R, Schaumburg HH (1981) Adrenoleukodystrophy. Failure of immunosuppression to prevent neurological progression.Arch Neurol 38: 48–49.Google Scholar
  49. Tiffany CW, Hoefler S, Moser HW, Burch RM (1991) Arachidonic acid metabolism in fibroblasts from patients with peroxisomal diseases.Biochim Biophys Acta 1096: 41–46.Google Scholar
  50. Uziel G, Bertini E, Rimoldi M, Gambetti M (1990) Italian multicentric dietary therapeutical trial in adrenoleukodystrophy. InAdrenoleukodystrophy and Other Peroxisomal Disorders: Clinical, Biochemical, Genetic and Therapeutic Aspects. Excerpta Medica, Amsterdam, 163–180.Google Scholar
  51. Van Duyn MA, Moser AB, Brown FR III, Sacktor N, Liu A, Moser HW (1984) The design of a diet restricted in saturated very long chain fatty acids: Therapeutic application in adrenoleukodystrophy.Am J Clin Nutr 40: 277–284.Google Scholar
  52. Wanders RJA, van Roermund CWT, van Wijland MJA et al (1988) Direct evidence that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids.Biochem Biophys Res Commun 153: 618–624.Google Scholar
  53. Weinberg K, Moser A, Watkins P et al (1988) Bone marrow transplantation (BMT) for adrenoleukodystrophy (ALD).Pediatr Res 23: 334A.Google Scholar
  54. Whitcomb RW, Linehan WR, Knazek RA (1988) Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro.J Clin Invest 81: 185–188.Google Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1992

Authors and Affiliations

  • H. W. Moser
    • 1
  • A. B. Moser
    • 1
  • K. D. Smith
    • 1
  • A. Bergin
    • 1
  • J. Borel
    • 1
  • J. Shankroff
    • 1
  • O. C. Stine
    • 1
  • C. Merette
    • 2
  • J. Ott
    • 2
  • W. Krivit
    • 3
  • E. Shapiro
    • 3
  1. 1.Kennedy Institute and Departments of Neurology, Pediatrics and PsychiatryJohns Hopkins UniversityUSA
  2. 2.The Departments of Psychiatry and Genetics and DevelopmentColumbia UniversityUSA
  3. 3.Departments of Pediatrics and NeurologyUniversity of MinnesotaUSA

Personalised recommendations