Journal of Inherited Metabolic Disease

, Volume 13, Issue 4, pp 487–500 | Cite as

Regulation of galactose metabolism: Implications for therapy

  • S. Segal
  • S. Rogers


In view of evidence that dietary therapy of galactose-1-phosphate uridyltransferase deficiency has failed to prevent complications of the disorder, there is a need for new strategies in treatment. The enhancement of residual enzyme activity in tissues of galactosaemic patients should provide such an approach. This possibility is derived from knowledge of the regulation of transferase activity in normal animal tissues. The pertinent observations summarized herein are: (1) that hepatic transferase activity is modulated by various cellular metabolites, uridine nucleotides being of particular significance; (2) that transferase activity in the young rat liver is subject to developmental programming with a several-fold increase after birth; (3) that transferase activity in pregnant rat liver is significantly increased which may be related to hormonal effects of progesterone; and (4) that pharmacological doses of folic acid may increase transferase activity. The basis of such regulation can give insight into sufficient augmentation of the residual activity to increase galactose utilization and thereby better the long-term outcome.


Folic Acid Galactose Uridine Transferase Activity Dietary Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertoli, D. and Segal, S. Developmental aspects and some characteristics of mammalian galactose-1-phosphate uridyltransferase.J. Biol. Chem. 241 (1966) 4023–4029Google Scholar
  2. Buist, N., Waggoner, D., Donnell, G. and Levy, H. The effects of newborn screening on prognosis in galactosemia: results of the international survey. Abs. 26th SSIEM Annual Symposium, Glasgow, 6–9 September 1988, p. 53Google Scholar
  3. Cohn, R. M. and Segal, S. Regulation of mammalian liver uridine diphosphogalactose-4-epimerase by pyrimidine nucleotides.Biochim. Biophys. Acta 222 (1970) 533–536Google Scholar
  4. Cohn, R. M. and Segal, S. Galactose metabolism and its regulation.Metabolism 22 (1973) 627–642Google Scholar
  5. Cuatrecasas, P. and Segal, S. Mammalian galactokinase: developmental and adaptive characteristics in rat liver.J. Biol. Chem. 240 (1965) 2382–2388Google Scholar
  6. Fishler, K., Koch, R., Donnell, G.N. and Wenz, E. Developmental aspects of galactosemia from infancy to childhood.Clin. Pediatr. 19 (1980) 38–44Google Scholar
  7. Friedman, J. H., Levy, H. L. and Boustany, R. M. Late onset neurologic syndromes in galactosemic siblings.Neurology 39 (1989) 741–742Google Scholar
  8. Gitzelmann, R. Formation of galactose-1-phosphate from uridine diphosphate galactose in erythrocytes from patients with galactosemia.Pediatr. Res. 3 (1969) 279–286Google Scholar
  9. Gitzelmann, R. and Hansen, R. G. Galactose biogenesis and disposal in galactosemics.Biochim. Biophys. Acta 372 (1974) 374–378Google Scholar
  10. Gitzelmann, R. and Steinmann, B. Galactosemia: How does long-term treatment change the outcome?Enzyme 32 (1984) 37–46Google Scholar
  11. Gitzelmann, R., Hansen, R. G. and Steinmann, B. Biogenesis of galactose, a possible mechanism of self-intoxification in galactosemia; in Hommes and Van den Berg (eds.),Normal and Pathological Development of Energy Metabolism, Academic Press, London, 1975, pp. 25–37Google Scholar
  12. Isselbacher, K. J. and Crane, S. M. Studies on the inhibition of galactose oxidation by ethanol.J. Biol. Chem. 236 (1961) 2394–2398Google Scholar
  13. Kaufman, F. R., Kogut, M. D., Donnell, G. N., Goebelsmann, U., March, C. and Koch, R. Hypergonadotropic hypogonadism in female patients with galactosemia.N. Engl. J. Med. 304 (1981) 994–998Google Scholar
  14. Kaufman, F. R., Xu, Y. K., Ng, W. G. and Donnell, G. N. Correlation of ovarian function with galactose-1-phosphate uridyltransferase levels in galactosemia.J. Pediatr. 112 (1988) 754–756Google Scholar
  15. Kaufman, F. R., Ng, W. G., Xu, Y. K., Cridici, T., Kaleito, T. A. and Donnell, G. N. Treatment of patients (PTS) with classical galactosemia (G) with oral uridine.Abs. Am. Soc. Pediatr. Res., April 1989Google Scholar
  16. Kelley, R. I., Feinberg, D. M. and Segal, S. Galactose-1-phosphate uridyltransferase in density-fractionated erythrocytes: Studies of normal and mutant enzymes.Hum. Genet. 82 (1989) 99–103Google Scholar
  17. Komrower, G. M. Galactosemia — thirty years on. The experience of a generation.J. Inher. Metab. Dis. 5 (1982) 96–104Google Scholar
  18. Lancet editorial. ‘Clouds over galactosaemia’.Lancet 1 (1982) 1379–1380Google Scholar
  19. Lo, W., Packman, S., Nash, S., Schmidt, K., Ireland, S., Diamond, I., Ng, W. and Donnell, G. Curious neurologic sequelae in galactosemia.Pediatrics 73 (1984) 309–312Google Scholar
  20. Mason, H. H. and Turner, M. E. Chronic galactosemia.Am. J. Dis. Child. 50 (1935) 359Google Scholar
  21. Mudd, S. H., Levy, H. L. and Skovby, F. Disorders transsulfuration. In Scriver, C.R., Beaudet, A. L., Sly, W. S. and Valley, D. (eds.),The Metabolic Basis of Inherited Disease, McGraw-Hill, New York, (1989), pp. 693–734Google Scholar
  22. Ng, W. G., Xu, Y. K., Kaufman, F. and Donnell, G. N. Uridine nucleotide sugar deficiency in galactosemia: implications.Clin. Res. 35 (1987) 212AGoogle Scholar
  23. Pesch, L., Segal, S. and Topper, Y. J. Progesterone effects on galactose metabolism in prepubertal patients with congenital galactosemia and in rats maintained on high galactose diets.J. Clin. Invest. 39 (1960) 178–184Google Scholar
  24. Rogers, S. R. and Segal, S. Changing activities of galactose-metabolizing enzymes during perfusion of suckling rat liver.Am. J. Physiol. 240 (1981) E333-E339Google Scholar
  25. Rogers, S. and Segal, S. Enhanced galactose metabolism in isolated perfused livers of folate-treated suckling rats.Metabolism 33 (1984) 634–640Google Scholar
  26. Rogers, S. and Segal, S. Effects of uridine on hepatic galactose-1-phosphate uridyltransferase.Enzyme 42 (1989) 53–60Google Scholar
  27. Rogers, S., Holtzapple, P. G., Mellman, W. al. Characteristics of galactose-1-phosphate uridyltransferase in intestinal mucosa of normal and galactosemic humans.Metabolism 19 (1970) 701–708Google Scholar
  28. Rogers, S., Guerra, M. and Segal, S. Galactose metabolism in suckling and adult isolated rat hepatocytes.Pediatr. Res. 17 (1983) 609–616Google Scholar
  29. Rogers, S. R., Bovee, B. W., Saunders, S. L. and Segal, S. Galactose as a regulatory factor of its own metabolism by rat liver.Metabolism 38 (1989a) 810–815Google Scholar
  30. Rogers, S., Bovee, B. W., Saunders, S. L. and Segal, S. Activity of hepatic galactose-metabolizing enzymes in pregnant rat and fetus.Pediatr. Res. 25 (1989b) 161–166Google Scholar
  31. Rosensweig, N. S., Herman, R. H. and Stifel, F. B. Dietary regulation of glycolytic enzymes. VI. Effect of dietary sugars and oral folic acid on human jejunal pyruvate kinase, phosphofructokinase and fructosediphosphatase activities.Biochim. Biophys. Acta 208 (1970) 373–380Google Scholar
  32. Rosensweig, N. S., Herman, R. H., Stifel, F. al. Regulation of human jejunal gycolytic enzymes by oral folic acid.J. Clin. Invest. 48 (1969a) 2038–2045Google Scholar
  33. Rosensweig, N. S., Stifel, F. B., Herman, Y. al. Regulation of human jejunal glycolytic enzymes by oral folic acid: time and dose response.Am. J. Clin. Nutr. 22 (1969b) 677–678Google Scholar
  34. Russell, J. D. and DeMars, R. UDPglucose:d-galactose-1-phosphate uridyltransferase in cultured human fibroblasts.Biochem. Genet. 1 (1967) 11–14Google Scholar
  35. Segal, S. and Bernstein, H. Observations on cataract formation in the newborn offspring of rats fed a high galactose diet.J. Pediatr. 62 (1963) 363–370Google Scholar
  36. Segal, S. and Cuatrecasas, P. The oxidation of14C-galactose by patients with congenital galactosemia. Evidence for a direct oxidative pathway.Am. J. Med. 44 (1968) 340–347Google Scholar
  37. Segal, S. and Rogers, S. Nucleotide inhibition of mammalian liver galactose-1-phosphate uridyltransferase.Biochim. Biophys. Acta 250 (1971) 351–360Google Scholar
  38. Segal, S., Blair, A. and Roth, H. The metabolism of galactose by patients with congenital galactosemia.Am. J. Med. 38 (1965) 62–70Google Scholar
  39. Segal, S., Rogers, S. and Holtzapple, P.G. Liver galactose-1-phosphate uridyltransferase: Activity in normal and galactosemic subjects.J. Clin. Invest. 50 (1971) 500–506Google Scholar
  40. Shin, Y. S., Rieth, M., Hoyer, S. and Endres, W. Uridine diphosphogalactose, galactose-1-phosphate and galactitol concentration in patients with classical galactosemia. Abs. 23rd SSIEM Annual Symposium ProceedingsInborn Errors of Metabolism, Liverpool, 1985Google Scholar
  41. Steinmann, B., Gitzelmann, R. and Zachmann, M. Hypogonadism and galactosaemia.N. Engl. J. Med. 305 (1981) 464–465Google Scholar
  42. Stifel, F. B., Herman, R. H. and Rosensweig, N. S. Dietary regulation of galactose-metabolizing enzymes: Adaptive changes in rat jejunum.Science 162 (1968) 692–693Google Scholar
  43. Taunton, O. D., Green, H., Stifel, F. al. Fructose-1, 6-diphosphate deficiency hypoglycemia and response to folate therapy in a mother and her daughter.Biochem. Med. 19 (1978) 260–276Google Scholar
  44. Tedesco, T. A. and Mellman, W. J. Galactosemia: Evidence of a structural gene mutation.Science 172 (1971) 727–728Google Scholar
  45. Unakar, N. J., Smart, T., Reddan, J. R. and Devlin, I. Regression of cataracts in the offspring of galactose fed rats.Ophthalmic Res. 11 (1979) 52–64Google Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1990

Authors and Affiliations

  • S. Segal
    • 1
    • 2
  • S. Rogers
    • 1
    • 2
  1. 1.Division of Biochemical Development and Molecular DiseasesChildren's Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.the Department of Pediatrics and MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations