Skip to main content
Log in

The inborn errors of peroxisomal β-oxidation: A review

  • Published:
Journal of Inherited Metabolic Disease

Summary

In recent years a growing number of inherited diseases in man have been recognized in which there is an impairment in peroxisomal β-oxidation. In some diseases this is due to the (virtual) absence of peroxisomes leading to a generalized loss of peroxisomal functions including peroxisomal β-oxidation. In most inborn errors of peroxisomal β-oxidation, however, peroxisomes are normally present and the impairment in peroxisomal β-oxidation is due to the single or multiple loss of peroxisomal β-oxidation enzyme activities. In all these disorders there is accumulation of very-long-chain fatty acids in plasma, which allows biochemical diagnosis of patients affected by an inborn error of peroxisomal β-oxidation to be done via gas-chromatographic analysis of plasma very-long-chain fatty acids. Subsequent enzymic and immunological investigations are required to identify the precise enzymic defects in these patients. In all inborn errors of peroxisomal β-oxidation known today there are multiple abnormalities, especially neurological with death usually occurring in the first decade of life. Prenatal diagnosis of these disorders has recently become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubourg, P., Bougneres, P. F. and Rocchiccioli, F. Capillary gas-liquid chromatographic-mass spectrometric measurement of very long chain (C22 to C26) fatty acids in microliter samples of plasma.J. Lipid. Res. 26 (1985) 263–267

    Google Scholar 

  • Bakkeren, J. A. J. M., Monnens, L. A. H., Trijbels, J. M. F. and Maas, J. M. Serum very long chain fatty acid pattern in Zellweger syndrome.Clin. Chim. Acta 138 (1984) 325–331

    Google Scholar 

  • Bhusnan, A., Singh, R. P. and Singh, I. Characterization of rat brain microsomal acylcoenzyme A ligase: different enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA.Arch. Biochem. Biophys. 246 (1986) 374–380

    Google Scholar 

  • Björkhem, I., Kase, B. F. and Pedersen, J. I. Role of peroxisomes in the biosynthesis of bile acids.Scand. J. Clin. Lab. Invest. 45 Suppl. 177 (1985) 23–31

    Google Scholar 

  • Boué, J., Oberle, I., Heilig, R., Mandel, J. L., Moser, A., Moser, H., Larsen, J. W., Dumez, Y. and Boué, A. First trimester prenatal diagnosis of adrenoleukodystrophy by determination of very long chain fatty acid levels and by linkage analysis to a DNA probe.Hum. Genet. 69 (1985) 272–274

    Google Scholar 

  • Bremer, J. Carnitine and its role in fatty acid metabolism.Trends Biochem. Sci. 2 (1977) 207–209

    Google Scholar 

  • Bremer, J. and Osmundsen, H. Fatty acid oxidation and its regulation. In Numa, S. (ed.)Fatty Acid Metabolism and its Regulation, Elsevier, Amsterdam, 1984, pp. 113–154

    Google Scholar 

  • Bremer, J. and Norum, K. R. Metabolism of very long chain monounsaturated fatty acids (C22: 1) and the adaptation to their presence in the diet.J. Lipid. Res. 23 (1982) 243–256

    Google Scholar 

  • Casteels, M., Schepers, L., Van Eldere, J., Eyssen, H. and Mannaerts, G. P. Inhibition of 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid oxidation and of bile acid secretion in rat liver by fatty acids.J. Biol. Chem. 263 (1988) 4654–4661

    Google Scholar 

  • Chen, W. W., Watkins, P. P., Osumi, T., Hashimoto, T. and Moser, H. W. Peroxisomal β-oxidation enzyme proteins in adrenoleukodystrophy: distinction between X-linked and neonatal adrenoleukodystrophy.Proc. Natl. Acad. Sci. USA 84 (1987) 1425–1428

    Google Scholar 

  • Christensen, E., Hagve, T-A. and Christopherson, B. O. The Zellweger syndrome: deficient chain-shortening of erucic acid (22: 1 (n-9)) and adrenic acid (22: 4 (n-6)) in cultured skin fibroblasts.Biochem. Biophys. Acta 959 (1988) 95–99

    Google Scholar 

  • Christiansen, R. Z. The effect of clofibrate feeding on hepatic fatty acid metabolism.Biochim. Biophys. Acta 530 (1978) 314–324

    Google Scholar 

  • Clayton, P. T., Lake, B. D., Hall, N. A., Shortland, D. B., Carruthers, R. A. and Lawson, A. M. Plasma bile acids in patients with peroxisomal dysfunction syndromes: analysis by capillary gas chromatography-mass spectrometry.Eur. J. Pediatr. 146 (1987) 166–173

    Google Scholar 

  • Clayton, P. T., Lake, B. D., Hjelm, M., Stephenson, J. B., Besley, G. T. N., Wanders, R. J. A., Schram, A. W., Tager, J. M., Schutgens, R. B. H. and Lawson, A. M. Bile acid analyses in ‘pseudo-Zellweger’ syndrome: clues to the defect in peroxisomal β-oxidation.J. Inher. Metab. Dis. 11 Suppl. 2 (1988) 165–168

    Google Scholar 

  • Cooper, T. G. and Beevers, H. β-oxidation in glyoxysomes from castor bean endosperm.J. Biol. Chem. 244 (1969) 3514–3520

    Google Scholar 

  • Diczfalusy, U. and Alexson, S. E. H. Peroxisomal chain-shortening of prostaglandine F.J. Lipid Res. 29 (1988) 1629–1636

    Google Scholar 

  • Diczfalusy, U., Alexson, S. E. H. and Pedersen, J. I. Chain-shortening of prostaglandin F by rat liver peroxisomes.Biochem. Biophys. Res. Commun. 144 (1987) 1206–1215

    Google Scholar 

  • Dommes, V., Baumgart, C. and Kunau, W. H. Degradation of unsaturated fatty acids in peroxisomes.J. Biol. Chem. 256 (1981) 8259–8262

    Google Scholar 

  • Dommes, V. and Kunau, W. H. Purification and properties of acyl coenzyme A dehydrogenases from bovine liver.J. Biol. Chem. 259 (1984) 1781–1788

    Google Scholar 

  • Farrell, S. O. and Bieber, L. L. Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs.Arch. Biochem. Biophys. 222 (1983) 123–132

    Google Scholar 

  • Furuta, S., Miyazawa, S., Osumi, T., Hashimoto, T. and Ui, N. Properties of mitochondrial and peroxisomal enoyl-CoA hydratase from rat liver.J. Biochem. 88 (1980) 1059–1070

    Google Scholar 

  • Furuta, S., Miyazawa, S. and Hashimoto, T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein.J. Biochem. 90 (1981) 1739–1750

    Google Scholar 

  • Goldfischer, S., Collins, J., Rapin, I., Coltoff-Schiller, B., Chang, C. H., Nigro, M., Black, V. H., Javitt, N. B., Moser, H. W. and Lazarow, P. B. Peroxisomal defects in neonatal and X-linked adrenoleukodystrophy.Science 227 (1985) 67–70

    Google Scholar 

  • Goldfischer, S., Collins, H., Rapin, I., Neumann, P., Neglia, W., Spiro, A. J., Ishii, T., Roels, F., Vamecq, J. and van Hoof, F. Pseudo-Zellweger syndrome: deficiences in several peroxisomal oxidative activities.J. Pediatr. 108 (1986) 25–32

    Google Scholar 

  • Hall, N. A., Lynes, G. W. and Hjelm, N. H. Ratios for very-long-chain fatty acids in plasma of subjects with peroxisomal disorders, as determined by HPLC and validated by gas chromatography-mass spectrometry.Clin. Chem. 34 (1988) 1041–1045

    Google Scholar 

  • Hamberg, M. Metabolism of prostaglandins in rat liver mitochondria.Eur. J. Biochem. 6 (1968) 135–146

    Google Scholar 

  • Hashmi, M., Stanley, W. and Singh, I. Lignoceroyl-CoASH ligase: enzyme defect in fatty acid β-oxidation systems in X-linked childhood adrenoleukodystrophy.FEBS Lett. 196 (1986) 347–350

    Google Scholar 

  • Hiltunen, J. K., Kärki, T., Hassinen, I. E. and Osmundsen, H. β-oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2, 4-dienoyl-coenzyme A reductase in peroxisomal β-oxidation.J. Biol. Chem. 261 (1986) 16484–16493

    Google Scholar 

  • Hovik, R. and Osmundsen, H. Peroxisomal β-oxidation of long-chain fatty acids processing different extents of unsaturation.Biochem. J. 247 (1987) 531–535

    Google Scholar 

  • Inestrosa, N. C., Bronfman, M. and Leighton, F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity.Biochem. J. 182 (1979) 779–788

    Google Scholar 

  • Inestrosa, N. C., Bronfman, M. and Leighton, M. Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver.Biochem. Biophys. Res. Commun. 95 (1980) 7–12

    Google Scholar 

  • Janssen, G., Toppet, S. and Parmentier, G. Structure of the side chain of the C29 dicarboxylic bile acid occurring in infants with coprostanic acidemia.J. Lipid Res. 23 (1982) 456–463

    Google Scholar 

  • Kärki, T., Hakkola, E., Hassinen, I. E. and Hiltunen, J. K. β-oxidation of polyunsaturated fatty acids in peroxisomes. Subcellular distribution of Δ3, Δ2-enoyl-CoA isomerase activity in rat liver.FEBS Lett. 215 (1987) 228–232

    Google Scholar 

  • Kase, B. F., Björkhem, I. and Pedersen, J. I. Formation of cholic acid from 3α, 7α, 12α-trihydroxy-5β-cholestanoic by rat liver peroxisomes.J. Lipid Res. 24 (1983) 1560–1567

    Google Scholar 

  • Kase, B. F., Pedersen, J. I., Strandvick, B. and Björkhem, I.In vivo andin vitro studies on the formation of bile acids in patients with the Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic acid and chenodeoxycholic acid.J. Clin. Invest. 76 (1985a) 2393–2402

    Google Scholar 

  • Kase, B. F., Björkhem, I., Haga, P. and Pedersen, J. I. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger.J. Clin. Invest. 75 (1985b) 427–435

    Google Scholar 

  • Kase, B. F., Prydz, K., Björkhem, I. and Pedersen, J. I.In vitro formation of bile acids from di- and trihydroxy-5β-cholestanoic acid in human liver peroxisomes.Biochim. Biophys. Acta 877 (1986) 37–42

    Google Scholar 

  • Kawamura, N., Moser, H. W. and Kishimoto, Y. Very long chain fatty acid oxidation in rat liver.Biochem. Biophys. Res. Commun. 99 (1981) 1216–1225

    Google Scholar 

  • Kimura, C., Kondo, A., Koeda, N., Yamanaka, H. and Mizugaki, M. Studies on the metabolism of unsaturated fatty acids. XV. Purification and properties of 2, 4-dienoyl-CoA reductase from rat liver peroxisomes.J. Biochem. 96 (1984) 1463–1469

    Google Scholar 

  • Knazek, R. A., Rizzo, W. B., Schulman, J. D. and Dave, J. R. Membrane microviscosity is increased in the erythrocytes of patients with adrenoleukodystrophy.J. Clin. Invest. 72 (1983) 245–248

    Google Scholar 

  • Kolvraa, S. and Gregersen, N.In vitro studies on the oxidation of medium chain dicarboxylic acids in rat liver.Biochim. Biophys. Acta 876 (1986) 515–525

    Google Scholar 

  • Krisans, S. K., Mortensen, R. M. and Lazarow, P. B. Acyl-CoA synthetase in rat liver peroxisomes.J. Biol. Chem. 255 (1980) 9599–9607

    Google Scholar 

  • Kunau, W. H. and Schulz, H. β-oxidation of unsaturated fatty acids: a revised pathway.Trends Biochem. Sci. 12 (1987) 403–406

    Google Scholar 

  • Kunau, W. H., Kionka, C., Ledebur, A., Mateblowski, M., Moreno de la Garza, M., Schultz-Borchard, U., Thieringer, R. and Veenhuis, M. β-oxidation systems in eukaryotic microorganisms. In Fahimi, H. D. and Sies, H. (eds.)Peroxisomes in Biology and Medicine, Springer-Verlag, Berlin, Heidelberg, 1987, pp. 128–140

    Google Scholar 

  • Lazarow, P. and de Duve, C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by clofibrate, a hypolipidemic drug.Proc. Natl. Acad. Sci. USA 73 (1976) 2043–2046

    Google Scholar 

  • Lazarow, P. B., Black, V., Shio, H., Fujiki, Y., Hajra, A. K., Datta, N. S., Bangaru, B. S. and Dancis, J. Zellweger syndrome: biochemical and morphological studies on two patients treated with clofibrate.Pediatr. Res. 19 (1985) 1356–1364

    Google Scholar 

  • Lazarow, P. B. and Moser, H. W. Disorders of peroxisome biogenesis. In Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D. (eds.)The Metabolic Basis of Inherited Disorders, McGraw-Hill, New York, 1989, in press

    Google Scholar 

  • Lazo, O., Contreras, M., Hashmi, M., Stanley, W., Irazu, C. and Singh, I. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy.Proc. Natl. Acad. Sci. USA 85 (1988) 7647–7651

    Google Scholar 

  • Mannaerts, G. P., Van Veldhoven, P., Van Broekhoven, A., Van de Broek, G. and De Beer, L. J. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic site of the peroxisomal membrane.Biochem. J. 204 (1982) 17–23

    Google Scholar 

  • Markwell, M. A. K., McGroarty, E. J., Bieber, L. L. and Tolbert, N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme.J. Biol. Chem. 248 (1973) 3426–3452

    Google Scholar 

  • Markwell, M. A. K., Tolbert, N. E. and Bieber, L. L. Comparison of the carnitine acyltransferase activities from rat liver peroxisomes and microsomes.Arch. Biochem. Biophys. 176 (1976) 479–488

    Google Scholar 

  • Masui, T. and Staple, E. The formation of bile acids from cholesterol.J. Biol. Chem. 241 (1966) 3889–3893

    Google Scholar 

  • Meyer, W. J., Smith, E. M., Richards, G. E., Greger, N. G., Brosnan, P. G. and Keenan, B. S. ACTH receptor defect in adrenoleukodystrophy.Pediatr. Res. 21 (1987) 465A (abstr.)

    Google Scholar 

  • Middleton, B. The oxoacyl CoA thiolases of animal tissues.Biochem. J. 132 (1973) 717–730

    Google Scholar 

  • Miyazawa, S., Osumi, T. and Hashimoto, T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes.Eur. J. Biochem. 103 (1980) 589–596

    Google Scholar 

  • Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T. and Ui, N. Properties of peroxisomal 3-ketoacyl-CoA thiolase from rat liver.J. Biochem. 90 (1981) 511–519

    Google Scholar 

  • Miyazawa, S., Ozasa, H., Furuta, S., Osumi, T. and Hashimoto, T. Purification and properties of carnitine acetyltransferase from rat liver.J. Biochem. 93 (1983a) 439–451

    Google Scholar 

  • Miyazawa, S., Ozasu, H., Osumi, T. and Hashimoto, T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver.J. Biochem. 94 (1983b) 529–542

    Google Scholar 

  • Miyazawa, S., Hashimoto, T. and Yokota, S. Identity of long-chain acyl coenzyme A synthetase of microsomes, mitochondria and peroxisomes in rat liver.J. Biochem. 98 (1985) 723–733

    Google Scholar 

  • Molzer, B., Bernheimer, H., Heller, R., Toifl, K. and Vetterlein, M. Detection of adrenoleukodystrophy by increased C26: 0 fatty acid levels in leukocytes.Clin. Chim. Acta 125 (1982) 299–305

    Google Scholar 

  • Molzer, B., Korchinksy, M., Bernheimer, H., Schmid, R., Wolf, R. and Roscher, A. Very long chain fatty acids in genetic peroxisomal disease fibroblasts: differences between the cerebrohepato-renal (Zellweger) syndrome and adrenoleukodystrophy variants.Clin. Chim. Acta 161 (1986) 81–90

    Google Scholar 

  • Moser, A. E., Borel, J., Odone, A., Naidu, S., Cornblath, D., Sanders, D. B. and Moser, H. W. A new dietary therapy for adrenoleukodystrophy: biochemical and preliminary clinical results in 36 patients.Ann. Neurol. 21 (1987) 240–249

    Google Scholar 

  • Moser, H. W., Moser, A. B., Kawamura, N., Murphy, J., Suzuki, K., Schaumburg, H. H., Kishimoto, Y. and Milunsky, A. Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts.Ann. Neurol. 7 (1980) 542–549

    Google Scholar 

  • Moser, H. W., Naidu, S., Kumar, A. J. and Rosenbaum, A. E. The adrenoleukodystrophies.CRC Crit. Rev. Neurobiol. 3 (1987) 29–88

    Google Scholar 

  • Naidu, S., Hoefler, G., Watkins, P. A., Chen, W. W., Moser, A. B., Hoefler, S., Rance, N. E., Powers, J. M., Beard, M., Green, W. R., Hashimoto, T. and Moser, H. W. Neonatal seizures and retardation in a girl with biochemical features of X-linked adrenoleukodystrophy.Neurology 38 (1988) 1100–1107

    Google Scholar 

  • Osumi, T. and Hashimoto, T. Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation.Biochem. Biophys. Res. Commun. 83 (1978) 479–485

    Google Scholar 

  • Osumi, T. and Hashimoto, T. Peroxisomal β-oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase.Biochem. Biophys. Res. Commun. 89 (1979) 580–584

    Google Scholar 

  • Osumi, T. and Hashimoto, T. Purification and properties of mitochondrial and peroxisomal 3-hydroxyl-acyl-CoA dehydrogenase from rat liver.Arch. Biochem. Biophys. 203 (1980a) 372–383

    Google Scholar 

  • Osumi, T., Hashimoto, T. and Ui, N. Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation.J. Biochem. 87 (1980b) 1735–1746

    Google Scholar 

  • Palosaari, P. M., Autio-Harmainen, H., Sormunen, R., Hassinen, I. E. and Hiltunen, J. K. β-oxidation of polyunsaturated fatty acids. Peroxisomal Δ32-enoyl-CoA isomerase in rat liver.International Union of Biochemistry Congress, 1988 (Abstr.)

  • Pampols, T., Ribes, A., Pineda, M., Ballester, A., Fernandez-Alvarez, E., Moser, A. E. and Moser, H. W. Medium chain dicarboxylic and hydroxydicarboxylic aciduria in a case of neonatal adrenoleukodystrophy.J. Inher. Metab. Dis. 10 (Suppl. 2) (1987) 217–219

    Google Scholar 

  • Parmentier, G. G., Janssen, G. A., Eggermont, E. A. and Eyssen, H. J. C27-bile acids in infants with coprostanic acidemia and occurrence of a 3α, 7α, 12α-trihydroxy-5β-C29-dicarboxylic acid as a major component in their serum.Eur. J. Biochem. 102 (1979) 173–183

    Google Scholar 

  • Paturneau-Jouas, M., Taillard, F., Gansmuller, A., Schutgens, R., Mikol, J., Aigrot, M. S. and Sereni, C. Clinical, biochemical, pathological ‘Zellweger-like’ disorder with morphological normal peroxisomes. In Salvayre, R., Douste-Blazy, L. and Gatt, S. (eds.)Lipid Storage Disorders: Biological and Medical Aspects, NATO ASI series, Life Sciences Vol. 150, 1988, pp. 805–809

  • Pedersen, J. I. and Gustafsson, J. Conversion of 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes.FEBS Lett. 121 (1980) 345–348

    Google Scholar 

  • Pederson, J. I., Hvattum, E., Flatabo, T. and Björkhem, I. Clofibrate does not induce peroxisomal 3α, 7α, 12α-trihydroxy-5β-cholestanoyl coenzyme A oxidation in rat liver: evidence that this reaction is catalyzed by an enzyme system different from that of peroxisomal acyl-CoA oxidation.Biochem. Int. 17 (1988) 163–169

    Google Scholar 

  • Poll-Thé, B. T., Saudubray, J. M., Ogier, H. A. M., Odièvre, M., Scotto, M., Monnens, L., Govaerts, L. C. P., Roels, F., Cornelis, A., Schutgens, R. B. H., Wanders, R. J. A., Schram, A. W. and Tager, J. M. Infantile Refsum disease: an inherited peroxisomal disorder; comparison with Zellweger syndrome and neonatal adrenoleukodystrophy.Eur. J. Pediatr. 146 (1987) 477–483

    Google Scholar 

  • Poll-Thé, B. T., Roels, F., Ogier, H., Scotto, J., Vamecq, J., Schutgens, R. B. H., Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Schram, A. W., Tager, J. M. and Saudubray, J. M. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudoneonatal adrenoleukodystrophy).Am. J. Hum. Genet. 42 (1988) 422–434

    Google Scholar 

  • Poulos, A., Singh, H., Paton, B., Sharp, P. and Derwas, N. Accumulation and defective gb-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants.Clin. Genet. 29 (1986) 397–408

    Google Scholar 

  • Poulos, A., Sharp, P., Fellenberg, A. J., and Johnson, D. W. Accumulation of pristanic acid in the plasma of patients with generalised peroxisomal dysfunction.Eur. J. Pediatr. 147 (1988) 143–147

    Google Scholar 

  • Powers, J. M. Adreno-leukodystrophy.Clin. Neuropath. 4 (1985) 191–199

    Google Scholar 

  • Prydz, K., Kase, B. F., Björkhem, I. and Pedersen, J. I. Subcellular localization of 3α, 7α-dihydroxy- and 3α, 7α, 12α-trihydroxy-5β-cholestanoyl-coenzyme A ligase(s) in rat liver.J. Lipid. Res. 29 (1988) 997–1004

    Google Scholar 

  • Rizzo, W. B., Phillips, M. W., Damman, A. L., Leshner, R. T., Jennings, S. S., Avigan, J. and Proud, V. K. Adrenoleukodystrophy: dietary oleic acid lowers hexacosanoate levels.Ann. Neurol. 21 (1987) 232–239

    Google Scholar 

  • Rocchiccioli, F., Aubourg, P. and Bougneres, F. Medium and long-chain dicarboxylic aciduria in patients with Zellweger syndrome and neonatal adrenoleukodystrophy.Pediatr. Res. 20 (1986) 62–66

    Google Scholar 

  • Rocchiccioli, F., Aubourg, P. and Choiset, A. Immediate prenatal diagnosis of Zellweger syndrome by direct measurement of very long chain fatty acids in chorionic villus cells.Prenat. Diagn. 7 (1987) 349–354

    Google Scholar 

  • Schepers, L., Casteels, M., Vamecq, J., Parmentier, G., Van Veldhoven, P. P. and Mannaerts, G. P. β-oxidation of the carboxyl side chain of prostaglandin E2 in rat liver peroxisomes and mitochondria.J. Biol. Chem. 263 (1988) 2724–2731

    Google Scholar 

  • Schepers, L., Casteels, M., Verheyden, K., Parmentier, G., Asselberghs, S., Eyssen, H. J. and Mannaerts, G. P. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase.Biochem. J. 257 (1989) 221–229

    Google Scholar 

  • Schram, A. W., Strijland, A., Hashimoto, T., Wanders, R. J. A., Schutgens, R. B. H., van den Bosch, H. and Tager, J. M. Biosynthesis and maturation of peroxisomal β-oxidation enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease.Proc. Natl. Acad. Sci. USA 83 (1986) 6156–6158

    Google Scholar 

  • Schram, A. W., Goldfischer, S., van Roermund, C. W. T., Brouwer-Kelder, E. M., Collins, J., Hashimoto, T., Heymans, H. S. A., van den Bosch, H., Schutgens, R. B. H., Tager, J. M. and Wanders, R. J. A. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency.Proc. Natl. Acad. Sci. USA 84 (1987) 2494–2497

    Google Scholar 

  • Schulz, H. Oxidation of fatty acids. In Vance, D. E. and Vance, F. E. (eds.)Biochemistry of Lipids and Membranes, Benjamin/Cummings, Menlo Park, CA, 1985, pp. 116–142

    Google Scholar 

  • Schutgens, R. B. H., Heymans, H. S. A., Wanders, R. J. A., van den Bosch, H. and Tager, J. M. Peroxisomal disorders: a newly recognized group of genetic diseases.Eur. J. Pediatr. 144 (1986) 430–440

    Google Scholar 

  • Schutgens, R. B. H., Schrakamp, G., Wanders, R. J. A., Heymans, H. S. A., Tager, J. M. and van den Bosch, H. Pre- and perinatal diagnosis of peroxisomal disorders.J. Inher. Metab. Dis. 12 Suppl. 1 (1989) 118–134

    Google Scholar 

  • Shimozowa, N., Suzuki, Y., Orii, T. and Hashimoto, T. Immunoblot detection of enzyme proteins of peroxisomal β-oxidation in fibroblasts, amniocytes and chorionic villous cells.Prenat. Diagn. 8 (1988) 287–298

    Google Scholar 

  • Shindo, Y. and Hashimoto, T. Acyl-coenzyme A synthetase and fatty acid oxidation in rat liver peroxisomes.J. Biochem. 84 (1978) 1177–1181

    Google Scholar 

  • Singh, I. and Kishimoto, Y. Effect of cyclodextrins on the solubilization of lignoceric acid, ceramide, and cerebroside and on the enzymatic reactions involving these compounds.J. Lipid Res. 24 (1983) 662–665

    Google Scholar 

  • Singh, I., Moser, A. B., Goldfischer, S. and Moser, H. W. Lignoceric acid is oxidized in the peroxisomes; implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy.Proc. Natl. Acad. Sci. USA 81 (1984) 4203–4207

    Google Scholar 

  • Singh, H. and Poulos, A. A comparative study of stearic acid and lignoceric acid oxidation by human skin fibroblasts.Arch. Biochem. Biophys. 250 (1986) 171–179

    Google Scholar 

  • Singh, H., Derwas, N. and Poulos, A. β-Oxidation of very long chain fatty acids and their coenzyme A derivatives by human skin fibroblasts.Arch. Biochem. Biophys. 254 (1987a) 526–533

    Google Scholar 

  • Singh, H., Derwas, N. and Poulos, A. Very long chain fatty acid β-oxidation by rat liver mitochondria and peroxisomes.Arch. Biochem. Biophys. 359 (1987b) 382–390

    Google Scholar 

  • Staack, H., Binstock, J. F. and Schulz, H. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from heart andEscherichia coli.J. Biol. Chem. 253 (1978) 1827–1831

    Google Scholar 

  • Steinberg, D. Phytanic acid storage disorders. In Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Goldstein, J. L. and Brown, M. S. (eds.)The Metabolic Basis of Inherited Disease, McGraw-Hill, New York, 1983, pp. 731–747

    Google Scholar 

  • Stoffel, W. and Caesar, H. Der Stoffwechsel der ungesättigten Fettsäuren. V. Zur β-Oxidation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an 3-cis-enoyl-CoA-Verbindungen.Hopple-Seyler's Z. Physiol. Chem. 341 (1965) 76–83

    Google Scholar 

  • Stoffel, W., Ditzer, R. and Caesar, H. Der Stoffwechsel der ungesättigten Fettsäuren. III. Zur β-Oxidation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an 3-cis-enoyl-CoA-Verbindungen.Hoppe-Seyler's Z. Physiol. Chem. 339 (1964) 167–181

    Google Scholar 

  • Stokke, O., Jellum, E., Kvittingen, E. A., Skjeldal, O. and Hristendal, G. Epoxy acids in peroxisomal disorders.Scand. J. Clin. Lab. Invest. 46 (1986) 95–96

    Google Scholar 

  • Suzuki, Y., Orii, T., Mori, M., Tatibana, M. and Hashimoto, T. Deficient activities and proteins of peroxisomal β-oxidation enzymes in infants with Zellweger syndrome.Clin. Chim. Acta 156 (1986) 191–196

    Google Scholar 

  • Suzuki, Y., Shimozawa, N., Orii, T., Igarashi, N., Kono, N., Matsui, A., Inoue, Y., Yokota, S. and Hashimoto, T. Zellweger-like syndrome with detectable hepatic peroxisomes: a variant form of peroxisomal disorder.J. Pediatr. 113 (1988a) 841–845

    Google Scholar 

  • Suzuki, Y., Shimozawa, N., Orii, T., Igarashi, N., Kono, N. and Hashimoto, T. Molecular analysis of peroxisomal β-oxidation enzymes in infants with Zellweger syndrome and Zellweger-like syndrome: further heterogeneity of the peroxisomal disorders.Clin. Chim. Acta 172 (1988b) 65–76

    Google Scholar 

  • Tager, J. M., Ten Harmsen van de Beek, W. A., Wanders, R. J. A., Hashimoto, T., Heymans, H. S. A., van den Bosch, H., Schutgens, R. B. H. and Schram, A. W. Peroxisomal β-oxidation enzyme proteins in the Zellweger syndrome.Biochem. Biophys. Res. Commun. 126 (1985) 1269–1275

    Google Scholar 

  • Tanaka, T., Hosaka, T., Hoshimaru, M. and Numa, S. Purification and properties of long-chain acyl coenzyme A synthetase from rat liver.Eur. J. Biochem. 98 (1979) 165–172

    Google Scholar 

  • Vamecq, J., de Hoffmann, E. and Van Hoof, F. The microsomal dicarboxylyl-CoA synthetase.Biochem. J. 230 (1985) 683–693

    Google Scholar 

  • Vamecq, J. and Draye, J. P. Interaction between the ω- and β-oxidation of fatty acids.J. Biochem. 102 (1987) 225–234

    Google Scholar 

  • Van Eldere, J. R., Parmentier, G. G., Eyssen, H. J., Wanders, R. J. A., Schutgens, R. B. H., Vamecq, J., Van Hoof, F., Poll-Thé, B. T. and Saudubray, J. M. Bile acids in peroxisomal disorders.Eur. J. Clin. Invest. 17 (1987) 386–390

    Google Scholar 

  • Vianey-Liaud, C., Divry, P., Gregersen, N. and Mathieu, M. The inborn errors of mitochondrial fatty acid oxidation.J. Inher. Metab. Dis. 10 Suppl. 1 (1987) 159–198

    Google Scholar 

  • Wanders, R. J. A., Schutgens, R. B. H., Schrakamp, G., van den Bosch, H., Tager, J. M., Schram, A. W., Hashimoto, T., Poll-Thé, B. T. and Saudubray, J. M. Infantile Refsum disease: deficiency of catalase-containing particles (peroxisomes), alkyldihydroxyacetone phosphate synthase and peroxisomal β-oxidation enzyme proteins.Eur. J. Pediatr. 145 (1986) 172–175

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Nijenhuis, A. A., Tromp, A., Schutgens, R. B H., Brouwer-Kelder, E. M., Schram, A. W., Tager, J. M., van den Bosch, H. and Schalkwijk, C. C. X-linked adrenoleukodystrophy: defective peroxisomal oxidation of very long chain fatty acid but not of very long chain fatty acyl-CoA esters.Clin. Chim. Acta 165 (1987a) 321–329

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Heikoop, J., Schutgens, R. B. H., Schram, A. W., van den Bosch, H., Poll-Thé, B. T., Saudubray, J. M., Moser, H. W. and Moser, A. B. Peroxisomal very long chain fatty acid β-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders.Clin. Chim. Acta 166 (1987b) 255–263

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Schutgens, R. B. H., Heikoop, J., van den Bosch, H., Schram, A. W. and Tager, J. M. Peroxisomal fatty acid β-oxidation in relation to the accumulation of very long chain fatty acids in peroxisomal disorders.J. Clin. Invest. 80 (1987c) 1778–1783

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Schutgens, R. B. H., Schram, A. W., van den Bosch, H. and Tager, J. M. Studies on the peroxisomal oxidation of palmitate and lignocerate in rat liver.Biochim. Biophys. Acta 919 (1987d) 21–25

    Google Scholar 

  • Wanders, R. J. A., Heymans, H. S. A., Schutgens, R. B. H., Barth, P. G., van den Bosch, H. and Tager, J. M. Peroxisomal disorders in neurology.J. Neurol. Sci. 88 (1988a) 1–39

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Schutgens, R. B. H., van den Bosch, H., Schram, A. W. and Tager, J. M. Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids.Biochem. Biophys. Res. Commun. 153 (1988b) 618–624

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., van Wijland, M. J. A., Schutgens, R. B. H., van den Bosch, H., Schram, A. W. and Tager, J. M. Identification of the primary defect in X-linked adrenoleukodystrophy: oxidation of very long chain fatty acids is deficient due to an impaired ability of peroxisomes to activate very long chain fatty acids. In Salvayre, R., Douste-Blazy, M. L. and Gatt, S. (eds.)Lipid Storage Disorders: Biological and Medical Aspects, NATO ASI-series, Life Sciences Vol. 150, Plenum Press, New York and London, 1988c, pp. 405–412

    Google Scholar 

  • Wanders, R. J. A., van Roermund, C. W. T., Schelen, A., Schutgens, R. B. H., van den Bosch, H. and Tager, J. M. X-linked adrenoleukodystrophy and other inborn errors of peroxisomal β-oxidation: identification of the primary defect using enzymic and immunological methods. In Tanaka, K. and Coates, P. M. (eds.)Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation, Alan Liss, New York, 1989, in press

    Google Scholar 

  • Watkins, P. A., Chen, W. W., Harris, C. J., Hoefler, G., Hoefler, S., Blake, D. C., Balfe, A., Kelley, R. I., Moser, A. B., Beard, M. E. and Moser, H. W. Peroxisomal bifunctional enzyme deficiency.J. Clin. Invest. 83 (1989) 771–777

    Google Scholar 

  • Whitcomb, R. W., Linehan, W. M. and Knazek, R. A. Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cellsin vitro.J. Clin. Invest. 81 (1988) 185–188

    Google Scholar 

  • Yamada, J., Horie, S., Watanabe, T. and Suga, T. Participation of peroxisomal β-oxidation system in the chain-shortening of a xenobiotic acyl compound.Biochem. Biophys. Res. Commun. 125 (1984) 123–128

    Google Scholar 

  • Yamada, J., Itoh, S., Horie, S., Watanabe, T. and Suga, T. Chain-shortening of a xenobiotic acyl compound by the peroxisomal β-oxidation system in rat liver.Biochem. Pharmac. 35 (1986) 4363–4368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanders, R.J.A., van Roermund, C.W.T., Schutgens, R.B.H. et al. The inborn errors of peroxisomal β-oxidation: A review. J Inherit Metab Dis 13, 4–36 (1990). https://doi.org/10.1007/BF01799330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01799330

Keywords

Navigation