Advertisement

Journal of Inherited Metabolic Disease

, Volume 12, Supplement 1, pp 231–246 | Cite as

Gene mapping of mineral metabolic disorders

  • R. V. Thakker
  • K. E. Davies
  • J. L. H. O'Riordan
Prenatal And Perinatal Diagnosis

Summary

Recent advances in the techniques of molecular biology and cytogenetics have enabled the localization of several mutant genes which result in disorders of phosphate, calcium, magnesium and water homeostasis. Thus, the genes causing X-linked hypophosphataemic rickets, Lowe's syndrome, Di George syndrome, X-linked recessive hypoparathyroidism, multiple endocrine neoplasia Type I, primary hypomagnesaemia and X-linked nephrogenic diabetes insipidus have been mapped. The molecular and genetic studies which localized these disease genes are described and the implications of this gene mapping in genetic counselling and in further elucidation of the mineral metabolic defects are discussed.

Keywords

Magnesium Gene Mapping Genetic Counselling Metabolic Disorder Disease Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbassi, V., Lowe, C. U. and Calcagno, P. L. Oculo-cerebro-renal syndrome.Am. J. Dis. Child. 115 (1968) 145–168Google Scholar
  2. Ahn, T. G., Antonarakis, S. E., Kronenberg, H. M., Igarashi, T. and Levine, M. A. Familial isolated hypoparathyroidism: a molecular genetic analysis of 8 families with 23 affected persons.Medicine 65 (1986) 73–81Google Scholar
  3. Albright, F., Butler, A. M. and Bloomberg, E. Rickets resistant to vitamin D therapy.Am. J. Dis. Child. 54 (1937) 529–547Google Scholar
  4. Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am. J. Hum. Genet. 32 (1980) 314–331Google Scholar
  5. Brandi, M. L., Aurbach, G. D., Fitzpatrick, L. A., Quarto, R., Spiegel, A. M., Bliziotes, M. M., Norten, J. A., Doppman, J. L. and Marx, S. J. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type I.N. Engl. J. Med. 314 (1986) 1287–1293Google Scholar
  6. Buckle, V. J., Edwards, J. H., Evans, E. P., Jonasson, J. A., Lyon, M. F., Peters, J., Searle, A. G. and Wedd, N. S. Chromosome maps of man and mouse II.Clin. Genet. 26 (1984) 1–11Google Scholar
  7. Buckle, V. J., Edwards, J. H., Evans, E. P., Jonasson, J. A., Lyon, M. F., Peters, J. and Searle, A. G. Comparative maps of human and mouse X-chromosomes.Cytogenet. Cell Genet. 40 (1985) 594–595Google Scholar
  8. Burnett, C. H., Dent, C. E., Harper, C. and Warland, B. J. Vitamin D resistant rickets. Analysis of 24 pedigrees with hereditary and sporadic cases.Am. J. Med. 36 (1964) 222–232Google Scholar
  9. Cannizzaro, L. A. and Emanuel, B. S.In situ hybridization and translocation breakpoint mapping: II Di George syndrome with partial monosomy of chromosome 22.Cytogenet. Cell Genet. 39 (1985) 179–183Google Scholar
  10. Cavenee, W. K., Murphree, A. L., Shull, M. M., Benedict, W. F., Sparkes, R. S., Kock, E. and Nordenskjold, M. Prediction of familial predisposition to retinoblastoma.N. Engl. J. Med. 314 (1988) 1201–1207Google Scholar
  11. Christensen, J. F. Three familial cases of atypical late rickets.Acta Paediatr. Scand. 28 (1941) 247–270Google Scholar
  12. Davies, K. E., Pearson, P. L., Harper, P. S., Murray, J. M., O'Brien, T., Sarfarazi, M. and Williamson, R. Linkage analysis of two cloned DNA sequences flanking the Duchenne muscular dystrophy locus on the short arm of the human X-chromosome.Nucl. Acids Res. 11 (1983) 2303–2312Google Scholar
  13. Davies, K. E. Molecular genetics of the human X chromosome.J. Med. Genet. 22 (1985) 243–249Google Scholar
  14. Davies, K. E., Mandel, J. L., Weissenbach, J. and Fellous, M. Report of the committee on the genetic constitution of the X and Y chromosomes, Ninth International Workshop on Human Gene Mapping,Cytogenet. Cell Genet. 46 (1987) 277–315Google Scholar
  15. de la Chappelle, A., Herva, R., Koivisto, M. and Aula, P. A deletion in chromosome 22 can cause Di George syndrome.Hum. Genet. 57 (1981) 253–256Google Scholar
  16. Eicher, E. M., Southard, J. L., Scriver, C. R. and Glorieux, F. H. Hypophosphataemia: Mouse model for human familial hypophosphataemic (vitamin D-resistant) rickets.Proc. Natl. Acad. Sci. USA 73 (1976) 4667–4671Google Scholar
  17. Fibison, W. J. and Emanuel, B. S. Molecular mapping in Di George syndrome.Am. J. Hum. Genet. 41 (1987) A119Google Scholar
  18. Gardner, R. J. M. and Brown, N. Lowe's syndrome: Identification of carrier by lens examination.J. Med. Genet. Google Scholar
  19. Gitelman, H. J., Graham, J. B. and Welt, L. G. A new familial disorder characterised by hypokalaemia and hypomagnesemia.Trans. Assoc. Am. Physicians 79 (1966) 221–235Google Scholar
  20. Glorieux, F. H. and Scriver, C. R. Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphataemia.Science, 175 (1972) 997–1000Google Scholar
  21. Graham, J. B., McFalls, V. W. and Winters, R. W. Familial hypophosphataemia with vitamin D resistant rickets. II. Three additional kindreds of the sex-linked dominant type with a genetic analysis for four such families.Am. J. Hum. Genet, 11 (1959) 311–332Google Scholar
  22. Hodgson, S. V., Heckmatt, J. Z., Hughes, E., Crolla, J. A., Dubowitz, V. and Bobrow, M. A balancedde novo X/autosome translocation in a girl with manifestations of Lowe syndrome.Am. J. Med. Genet. 23 (1986) 837–847Google Scholar
  23. Hoffman, E. P., Knudson, C. M., Campbell, K. P. and Kunkel, L. M. Subcellular fractionation of dystrophin to the triads of skeletal muscle.Nature 330 (1987) 754–758Google Scholar
  24. Johnston, S. S. and Nevin, N. C. Ocular manifestations in patients and female relatives of families with the oculocerebrorenal syndrome of Lowe.Birth Defects: Orig. Art. Ser. X11(3) (1976) 569–577Google Scholar
  25. Kambouris, M., Dlouhy, S. R., Trofatter, J. A., Conneally, P. M. and Hodes, M. E. Localisation of the gene for X-linked nephrogenic diabetes insipidus to Xq28.Am. J. Med. Genet. 29 (1988) 239–246Google Scholar
  26. Kelley, R. I., Zackai, E. H., Emmanuel, B. S., Kistenmacher, M., Greenberg, F. and Punnett, H. H. The association of the Di George anomalad with partial monosomy of chromosome 22.J. Pediatr. 101 (1982) 197–200Google Scholar
  27. Knoers, N., van den Heyden, H., van Oost, B., Monnens, L., Willems, J. and Ropers, H. Tight linkage between nephrogenic diabetes insipidus and DXS52.Cytogenet. Cell Genet. 46 (1987) 640Google Scholar
  28. Knudson, A. G., Strong, L. C. and Anderson, D. E. Heredity and cancer in man.Progr. Med. Genet. 9 (1973) 113–158Google Scholar
  29. Kobrinsky, N. L., Doyle, J. J., Israels, E. D., Winter, J. S. D., Cheang, M. S., Walker, R. D. and Bishop, A. J. Absent factor VIII response to synthetic vasopressin analogue (DDAVP) in nephrogenic diabetes insipidus.Lancet 1 (1985) 1293–1294Google Scholar
  30. Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C. and Kunkel, L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organisation of the DMD gene in normal and affected individual.Cell 50 (1987) 509–517Google Scholar
  31. Koufos, A., Hansen, M. F., Lampkin, B. C., Workman, M. L., Copeland, N. G., Jenkins, N. A. and Cavenee, W. K. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour.Nature 309 (1984) 170–172Google Scholar
  32. Larsson, C., Skogseld, B., Oberg, K., Nakamura, Y. and Nordenskjold, M. Multiple endocrine neoplasia Type 1 gene maps to chromosome 11 and is lost in insulinoma.Nature 332 (1988) 85–87Google Scholar
  33. Lowe, C. U., Terrey, M. and MacLachlan, E. A. Organic-aciduria, decreased renal ammonia production, hydrophthalmos and mental retardation.Am. J. Dis. Child. 83 (1952) 164–168Google Scholar
  34. Lyon, M. F. Mechanisms and evolutionary origins of variable X chromosome activity in mammals.Proc. R. Soc. Lond. B 1987 (1974) 243–268Google Scholar
  35. Lyon, M. F., Scriver, C. R., Baker, L. R. I., Tenenhouse, H. S., Kronick, J. and Mandla, S. TheGy mutation: another cause of X-linked hypophosphataemia in mouse.Proc. Natl. Acad. Sci. USA 83 (1986) 4899–4903Google Scholar
  36. Mächler, M., Fre, D., Gal, A., Orth, U., Wienker, T. F., Fanconi, A. and Schmid, W. X-linked dominant hypophosphataemia is closely linked to DNA markers DXS41 and DXS43 at Xp22.Hum. Genet. 73 (1986) 271–275Google Scholar
  37. Manz, F., Scharer, K., Janka, P. and Lombeck, J. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephocalcinosis in siblings.Eur. J. Pediatr. 128 (1978) 67–79Google Scholar
  38. Marx, S. J., Spiegel, A. M., Levine, M. A., Rizzoli, R. E., Lasker, R. D., Santora, A. C., Downs, R. V. Jr. and Aurbach, G. D. Familial hypocalciuric hypercalcaemia: the relation to primary parathyroid hyperplasia.N. Engl. J. Med. 307 (1982) 416–426Google Scholar
  39. Mathew, C. G. P., Smith, B. A., Thorpe, K., Wong, Z., Royle, N. J., Jeffreys, A. J. and Ponder, B. A. J. Deletion of genes on chromosome 1 in endocrine neoplasia.Nature 328 (1987) 524–526Google Scholar
  40. McIlraith, C. H. Notes on some cases of diabetes insipidus with marked familial and hereditary tendencies.Lancet 2 (1892) 767–768Google Scholar
  41. McKusick, V. A.Mendelian Inheritance in Man. 8th edition, Baltimore, John Hopkins University Press, 1988Google Scholar
  42. Meyer, M., Mattei, J. F., Viallard, J. L., Goumy, P., Dastugue, B. and Malpuech, G. Hypocalcemie magnesodependante par trouble specifique de l'absorption du magnesium, associee a une anomalie chromosomique.Rev. Fr. Endocr. Clin. 19 (1978) 101–108Google Scholar
  43. Morton, N. E. Sequential tests for the detection of linkage.Am. J. Hum. Genet. 7 (1955) 277–318Google Scholar
  44. Naylor, S. L., Sakuguchi, A. Y., Szoka, P., Hendy, G. N., Kronenberg, H. M., Rich, A. and Shows, T. B. Human parathyroid hormone gene (PTH) is on the short arm of the chromosome 11.Somat. Cell Genet. 9 (1983) 609–616Google Scholar
  45. Ohno, S.Sex Chromosomes and Sex-linked Genes, Springer, Berlin, Heidelberg, New York, 1967Google Scholar
  46. Ott, J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies.Am. J. Hum. Genet. 26 (1974) 588–597Google Scholar
  47. Pallisgaard, G. and Goldschmidt, T. The oculo-cerebro-renal syndrome of Lowe in four generations of one family.Acta Paediatr. Scand. 60 (1971) 146–148Google Scholar
  48. Peden, V. H. True idiopathic hypoparathryoidism as a sex-linked recessive trait.Am. J. Hum. Genet. 12 (1960) 323–337Google Scholar
  49. Pembrey, M. E. Applications and limitations of direct DNA analysis in genetic prediction.J. Inher. Metab. Dis. 9 Suppl. 1 (1986) 38–48Google Scholar
  50. Proto, G., Barberi, M., Cattalini, M. and Bertolissi, F. Transmissione autosomica dominante dell'ipoparatiroidismo idiopatico familiare.Estrat. Minerva Endocriniol. 10 (1985) 217–222Google Scholar
  51. Read, A. P., Thakker, R. V., Davies, K. E., Mountford, R. G., Brenton, D. P., Davies, M., Glorieux, F., Harris, R., Hendy, G. N., King, A., McGlade, S., Peacock, J., Smith, R. and O'Riordan, J. L. H. Mapping of human X-linked hypophosphataemic rickets by multilocus linkage analysis.Hum. Genet. 73 (1986) 267–270Google Scholar
  52. Rohn, R. D., Leffell, M. S., Leadem, P., Johnson, D., Rubiot, T. and Emanuel, B. S. Familial third-fourth pharyngeal pouch syndrome with apparent autosomal dominant transmission.J. Pediatr. 105 (1984) 47–51Google Scholar
  53. Ruddle, F. H. The William Allan Memorial Award Address: Reverse genetics and beyond.Am. J. Hum. Genet. 36 (1984) 944–953Google Scholar
  54. Schmidtke, J., Pape, B., Krenegel, U., Langenbeck, U., Cooper, D., Breyel, E. and Mayer, H. Restriction fragment length polymorphisms at the human parathyroid hormone gene locus.Hum. Genet. 67 (1984) 428–431Google Scholar
  55. Schmidtke, J., Kruse, K., Pape, B. and Sippell, G. Exclusion of close linkage between parathyroid hormone gene and a mutant gene locus causing idiopathic hypoparathyroidism.J. Med. Genet. 23 (1986) 217–219Google Scholar
  56. Silver, D. N., Lewis, R. A. and Nussbaum, R. L. Mapping the Lowe oculocerebrorenal syndrome to Xq24–q26 by use of restriction fragment length polymorphisms.J. Clin. Invest. 79 (1987) 282–285Google Scholar
  57. Stromme, J. H., Nesbakken, R., Normann, T., Skjorten, F., Skyberg, D. and Johannessen, B. Familial hypomagnesemia.Acta Paediatr. Scand. 58 (1969) 433–444Google Scholar
  58. Tenenhouse, H. S., Scriver, C. R., McInnes, R. R. and Glorieux, F. H. Renal handling of phosphatein vivo andin vitro by the X-linked hypophosphataemic male mouse; Evidence for a defect in the brush border membrane.Kidney Int. 14 (1978) 236–244Google Scholar
  59. Thakker, R. V. Localisation of the hypophosphataemic rickets gene.Bone 5 (1988) 27–30Google Scholar
  60. Thakker, R. V. and O'Riordan, J. L. H. Inherited forms of rickets and osteomalacia. In Martin, T. J. (Ed.)Clinical Endocrinology and Metabolism, Vol. 2 No. 1,Metabolic Bone Disease. Balliere Tindall, London (1988) pp. 157–191Google Scholar
  61. Thakker, R. V., Davies, M., Davies, K. E., Hendy, G. N., McGlade, S., King, A., Read, A. P., Mountford, R. G., Kilgore, C. J., Glorieux, F., Brenton, D. P., Smith, R., Harris, R. and O'Riordan, J. L. H. Localisation of the gene causing X-linked hypophosphataemic rickets.Q. J. Med. 61 (1986) 1071–1072Google Scholar
  62. Thakker, R. V., Read, A. P., Davies, K. E., Whyte, M. P., Weksberg, R., Glorieux, F., Davies, M., Mountford, R. G., Harris, R., King, A., Kim, G. S., Fraser, D., Kooh, S. W. and O'Riordan, J. L. H. Bridging markers defining the map position of X-linked hypophosphataemic rickets.J. Med. Genet. 24 (1987) 756–760Google Scholar
  63. Thakker, R. V., Davies, K. E., Whyte, M. P., Wooding, C. and O'Riordan, J. L. H. Localisation of the gene causing X-linked hypoparathyroidism to the long arm of the X-chromosome (Xq26–Xq27).J. Bone Min. Res. 3 (1988) S-210Google Scholar
  64. White, R., Leppert, M., Bishop, D. T., Barker, D., Berkowitz, J., Brown, C., Calahan, P., Holm, T. and Jerominski, L. Construction of linkage maps with DNA markers for human chromosomes.Nature 313 (1985) 101–105Google Scholar
  65. Whyte, M. P. and Weldon, V. V. Idiopathic hypoparathyroidism presenting with seizures during infancy: X-linked recessive inheritance in a large Missouri kindred.J. Pediatr. 99 (1981) 608–611Google Scholar
  66. Whyte, M. P., Kim, G. S. and Kosanovich, M. Absence of parathyroid tissue in sex-linked recessive hypoparathyroidism.J. Pediatr. 109 (1986) 915Google Scholar
  67. Winters, R. W., Graham, J. B., Williams, T. F., McFalls, V. W. and Burnett, C. H. A genetic study of familial hyophosphataemia and vitamin D resistant rickets with a review of the literature.Medicine 37 (1958) 97–142Google Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1989

Authors and Affiliations

  • R. V. Thakker
    • 1
  • K. E. Davies
    • 2
  • J. L. H. O'Riordan
    • 3
  1. 1.Division of Molecular MedicineClinical Research CentreHarrow
  2. 2.Nuffield Department of Clinical MedicineJohn Radcliffe HospitalOxford
  3. 3.The Middlesex HospitalLondonUK

Personalised recommendations