Skip to main content

Advertisement

Log in

The role of relative osteoneural growth in the gross morphogenesis of the skeleton: A hypothesis

Le rôle de la croissance relative ostéo-neurale dans la morphogénèse du squelette. Une hypothèse

  • Original Papers
  • Published:
Anatomia Clinica Aims and scope Submit manuscript

Summary

A unifying concept of gross skeletal (neurocranial, neurospinal and appendicular) morphogenesis is proposed. It is based on a close developmental relationship of bone and the nervous tissue, most evident in the neurocranium. The neurospinal developmental interrelationship is modified by the neurovertebral growth differential, which appears to influence the development of spinal curvatures and the gross morphological features of the individual vertebrae. Disproportion in osteoneural growth, as a general biological phenomenon, would be expected to affect the development of the appendicular skeleton. The gross shape of the long bones (physiological curvature and epimetaphyseal widening/‘modelling’) appear to result from a buildup of rapidly forming skeletogenic material adjacent to slower growing nervous trunks, as is the case with the enchondrally developing vertebral body.

Pathological accentuation of vertebro-osteoneural growth disproportion, brought about mainly by inhibition of the vulnerable neural growth, will result in abnormal gross features of the skeleton, i.e., pathological curvatures, terminal or general thickening and shortening of bones, or dislocation of joints. Experimental and clinical deformities, such as idiopathic scoliosis, achondroplastic conditions, congenital dislocation of the hip joint, and some other bone dysplasias confined in their onset and progression to the growth period of life, seem to be related to the suggested mechanism. For the above-mentioned skeletal disorders the term ‘osteoneural growth pathology’ is proposed.

Résumé

On propose une conception unitaire de la morphogénèse normale et pathologique du squelette axial et appendiculaire, à partir des relations les plus étroites existant entre la croissance des systèmes osseux et nerveux; la région neurocraniale en est la manifestation la plus expressive. La disproportion de croissance neuro-vertébrale en longueur exerce une influence décisive sur l'installation des courbures vértébrales physiologiques et sur les caractères morphologiques de chacune des vertèbres, aussi bien dans les dimensions des corps vértébraux que la forme du trou vertébral et des trous de conjugaison. Evoquant un phénomène biologique général, la disproportion de croissance ostéo-neurale agit de même sur le développement du squelette des membres. La forme, c'est-à-dire leurs courbures physiologiques et le modelage de la région épi-métaphysaire peuvent aussi être rattachés à un phénomène ≪d'amassement≫ de tissus osseux proliférant plus rapidement le long des troncs nerveux périphériques.

L'accentuation pathologique de la disproportion de croissance ostéo-neurale, du fait principalement de l'inhibition de la croissance des structures nerveuses peut aboutir à des modifications des parties correspondantes du squelette avec effets de raccourcissement, de courbures pathologiques, d'élargissement partiel ou total et éventuellement, de dislocation articulaire. La conception proposée s'appuie sur des observations expérimentales de croissance ostéo-neurale chez des embryons d'oiseaux et d'amphibiens. On peut expliquer certaines déformations du squelette expérimentales ou cliniques comme la scoliose idiopathique, l'achondroplasie et la dysplasie congénitale de hanche par un même mécanisme d'adaptation des os en croissance à des troubles du développement des structures nerveuses avoisinantes. Une dénomination commune est proposée pour ces troubles de la croissance: ≪pathologie de la croissance relative ostéo-neurale≫.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnall KM, Harris PF, Jones PRM (1977) A radiographic study of the human fetal spine. J Anat 123:777–782

    Google Scholar 

  • Bardeen CR, Lewis WH (1901) Development of the limbs, body-wall and back in man. Am J Anat 1:1–35

    Google Scholar 

  • Baumann JA (1951) Fibre nerveuse et cartilage: Un exemple d'incompatibilité intertissulaire? Arch Anat Histol Embryol (Strasb) 34:55–62

    Google Scholar 

  • Beadle O (1932) Vergleichende Untersuchungen über die Wirbelkörperepiphyse beim Menschen und beim Tier. Beitr Pathol Anat Allg Pathol 88:101–112

    Google Scholar 

  • Becker A (1940) Über Lageveränderungen der Spinalnervenwurzeln und der Spinalganglien während der ontogenetischen Entwicklung. Gegenbaurs Morphol Jahrb 84:17–38

    Google Scholar 

  • Blechschmidt E (1956) Entwicklungsfunktionelle Untersuchungen am Nervensystem. Entstehung der Wachstumskoordinationen. Z Anat Entwgesch 119:112–130

    Google Scholar 

  • Corning HK (1942) Lehrbuch der topographischen Anatomie. JF Bergmann, München

    Google Scholar 

  • Detwiler SR (1934) An experimental study of spinal nerve segmentation in Amblystoma with reference to the plurisegmental contribution to the brachial plexus. J Exp Zool 67:395–441

    Google Scholar 

  • Eisenstein S (1977) The morphometry and pathological anatomy of the lumbar spine in south african negroes and caucasoids with specific reference to spinal stenosis. J Bone Joint Surg [Br] 59:173–180

    Google Scholar 

  • Erdheim J (1931) Über Wirbelsäulenveränderungen bei Akromegalie. Virchows Arch [Pathol Anat] 281:197–296

    Google Scholar 

  • Erhard R (1961) Untersuchungen über die Wirkung von Aristamid auf Hühnerembryonen. Roux' Arch 153:217–235

    Google Scholar 

  • Gooding CA, Neuhauser EBD (1965) Growth and development of the vertebral body in the presence and absence of normal stress. Am J Roentgenol 93:388–394

    Google Scholar 

  • Guyot J (1981) Atlas of human limb joints. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Holtzer H (1952) Experimental analysis of development of spinal column. I. Response of precartilage cells to size variation of spinal cord. J Exp Zool 121:121–149

    Google Scholar 

  • Holtzer H (1952a) Experimental analysis of development of spinal column. II. The dispensability of the notochord. J Exp Zool 121:573–589

    Google Scholar 

  • Houston CS, Zaleski WA (1967) The shape of vertebral bodies and femoral necks in relation to activity. Radiology 89:59–66

    Google Scholar 

  • Lebedkin SI: Changes in length of spinal cord segments and axial skeleton during the development in man and in swine (in Russian). Izvest Nauc Inst PF Lesgafta, Vol 20, Leningrad, pp 13–102

  • Lehoczky T, Sós J, Halasy M (1964) Animal experiments on the aetiology of myelopathy. Akadémiai Kiadó, Budapest, pp 128–145

    Google Scholar 

  • Ring PA (1961) The influence of nervous system upon the growth of bones. J Bone Joint Surg [Br] 43:121–140

    Google Scholar 

  • Ring PA, Ward BCH (1958) Paralytic bone lengthening following poliomyelitis. Lancet 2:551–553

    Google Scholar 

  • Roth M (1969) The vertebral groove. Acta Radiol 9:740–745

    Google Scholar 

  • Roth M (1980) Die Neuromorphologie der Gelenkbewegungen. Gegenbaurs Morphol Jahrb 126:900–948

    Google Scholar 

  • Roth M (1981) Idiopathic scoliosis from the point of view of the neuroradiologist. Neuroradiology 21:133–138

    Google Scholar 

  • Roth M, Krkoška J, Toman I (1976) Morphogenesis of the spinal canal, normal and stenotic. Neuroradiology 10:277–286

    Google Scholar 

  • Salamon G, Louis R, Faure J, Combalbert A (1965) L'émergence des racines lombo-sacrées. J Radiol Electrol 46:547–551

    Google Scholar 

  • Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol No 214, Vol 33, Carnegie Inst of Washington, pp 20–41

  • Streeter GL (1919) Factors involved in the formation of the filum terminale. Am J Anat 25:1–11

    Google Scholar 

  • Taylor JR (1975) Growth of human intervertebral disks and vertebral bodies. J Anat 120:49–68

    Google Scholar 

  • Töndury G (1958) Entwicklungsgeschichte und Fehlbildungen der Wirbelsäule. Hippokrates-Verlag, Stuttgart

    Google Scholar 

  • Watterson RL, Fowler I, Fowler BJ (1954) The role of the neural tube and notochord in development of the axial skeleton of the chick. Am J Anat 95:337–400

    Google Scholar 

  • Williams TW (1943) A technique for the gross differential staining of peripheral nerves in cleared vertebrate tissue. Anat Rec 86:189–195

    Google Scholar 

  • Wolpert L (1971) Positional information and pattern. Curr Top Dev Biol 6:183–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M. The role of relative osteoneural growth in the gross morphogenesis of the skeleton: A hypothesis. Anat. Clin 4, 211–225 (1982). https://doi.org/10.1007/BF01798891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01798891

Keywords

Navigation