Skip to main content
Log in

Organization of hepatic nitrogen metabolism and its relation to acid-base homeostasis

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Hepatic and renal nitrogen metabolism are linked by an interorgan glutamine flux, coupling both renal ammoniagenesis and hepatic ureogenesis to systemic acid base regulation. This is because protein breakdown produces equimolar amounts of NH +4 and HCO 3 . A hepatic role in this interorgan team effort is based upon the tissuespecific presence of urea synthesis, which represents a major irreversible pathway for removal of metabolically generated bicarbonate. A sensitive and complex control of bicarbonate disposal via ureogenesis by the extracellular acid-base status creates a feed-back control loop between the acidbase status and the rate of bicarbonate elimination. This bicarbonate-homeostatic mechanism operates without threat of hyperammonemia, because a sophisticated structural and functional organisation of ammonia-metabolizing pathways in the liver acinus uncouples urea synthesis from the vital need to eliminate potentially toxic ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson DE, Camien M (1982) The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Reg 21:261–302

    Google Scholar 

  2. Atkinson DE, Bourke E (1984) The role of ureagenesis in pH homeostasis. Trends Biochem Sci 9:297–300

    Google Scholar 

  3. Brosnan JT, Vinay P, Gougoux A, Halperin ML (1988) Renal ammonium production and its implications for acidbase balance. In: Häussinger D (ed) pH homeostasis. Academic Press, New York London, pp 281–304

    Google Scholar 

  4. Cooper AJ, Nieves E, Coleman AE, Filc-DeRicco S, Gelbard A (1987) Short-term metabolic fate of [13N]ammonia in rat liver in vivo. J Biol Chem 262:1073–1080

    Google Scholar 

  5. Dodgson SJ, Forster RE, Storey BT, Mela L (1980) Mitochondrial carbonic anhydrase. Proc Natl Acad Sci 77:5562–5566

    Google Scholar 

  6. Gaasbeek-Janzen JW, Lamers WH, Moorman AFM, De Graaf A, Los AJ, Charles R (1984) Immunohistochemical localization of carbamoylphosphate synthetase (ammonia) in adult rat liver. J Histochem Cytochem 32:557–564

    Google Scholar 

  7. Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary cultures. EMBO J 3:567–570

    Google Scholar 

  8. Gebhardt R, Ebert A, Bauer G (1988) Heterogeneous expression of glutamine synthetase mRNA in rat liver parenchyma by in situ hybridisation and Northern blot analysis of RNA from periportal and perivenous hepatocytes. FEBS Lett 241:89–93

    Google Scholar 

  9. Gerok W, Häussinger D (1987) Neukonzeption der systemischen Säurebasenregulation — die Bedeutung der Leber. Internist 27:429–436

    Google Scholar 

  10. Guder W, Häussinger D, Gerok W (1987) Renal and hepatic nitrogen metabolism in systemic acid base regulation. J Clin Chem Clin Biochem 25:457–466

    Google Scholar 

  11. Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureagenesis in perfused rat liver. Eur J Biochem 133:269–274

    Google Scholar 

  12. Häussinger D (ed) (1988) pH homeostasis. Academic Press, New York London

    Google Scholar 

  13. Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267:281–290

    Google Scholar 

  14. Häussinger D, Gerok W, Sies H (1984) Hepatic role in pH regulation: role of the intercellular glutamine cycle. Trends Biochem Sci 9:300–302

    Google Scholar 

  15. Häussinger D, Gerok W (1984) Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthetase in CCl4-induced liver cell necrosis with no effect on urea synthesis. Chem Biol Interact 48:191–194

    Google Scholar 

  16. Häussinger D, Gerok W (1985) Hepatic urea synthesis and pH regulation: role of CO2, HCO 3 , pH and the activity of carbonic anhydrase. Eur J Biochem 152:381–386

    Google Scholar 

  17. Häussinger D, Kaiser S, Stehle T, Gerok W (1986) Liver carbonic anhydrase and urea synthesis: the effect of diuretics. Biochem Pharmacol 35:3317–3322

    Google Scholar 

  18. Häussinger D, Gerok W, Sies H (1986) The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem J 236:261–265

    Google Scholar 

  19. Häussinger D, Steeb R, Gerok W (1990) Ammonium and bicarbonate homeostasis in chronic liver disease. Klin Wochenschr 68:175–182

    Google Scholar 

  20. Jungermann K, Katz N (1982) Metabolic heterogeneity of liver parenchyma. In: Sies H (ed) Metabolic compartmentation. Academic Press, New York London, pp 411–435

    Google Scholar 

  21. Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764

    Google Scholar 

  22. Kaiser S, Gerok W, Häussinger D (1988) Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonemia in chronic liver disease. Eur J Clin Invest 18:535–542

    Google Scholar 

  23. Mc Givan JD, Bradford NM, Verhoeven AJ, Meijer AJ (1984) Liver glutaminase. In: Häussinger D, Sies H (eds) Glutamine metabolism in mammalian tissues. Springer, Berlin Heidelberg, pp 122–137

    Google Scholar 

  24. Mc Givan JD (1989) Liver glutamine and glutamate metabolism. In: Kvamme E (ed) Glutamine and glutamate in mammals, vol. 1. CRC Press, Boca Raton, Fla, pp 183–202

    Google Scholar 

  25. Moorman AFM, De Boer AJ, Geerts WJC, Zande LVD, Lamers WH, Charles R (1988) Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem 36:751–755

    Google Scholar 

  26. Smith DD, Campbell JW (1988) Distribution of glutamine synthetase and carbamoylphosphate synthetase I in vertebrate liver. Proc Natl Acad Sci 85:160–164

    Google Scholar 

  27. Traber PG, Chianale J, Gumucio JJ (1988) Physiologic significance and regulation of hepatocellular heterogeneity. Gastroenterology 95:30–43

    Google Scholar 

  28. Watford M, Smith EM (1990) Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem J 267:265–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häussinger, D. Organization of hepatic nitrogen metabolism and its relation to acid-base homeostasis. Klin Wochenschr 68, 1096–1101 (1990). https://doi.org/10.1007/BF01798059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01798059

Key words

Navigation