Journal of Inherited Metabolic Disease

, Volume 14, Issue 4, pp 563–579 | Cite as

Investigation of the molecular basis of the genetic deficiency of UDP-glucuronosyl-transferase in Crigler-Najjar syndrome

  • K. J. Robertson
  • D. Clarke
  • L. Sutherland
  • R. Wooster
  • M. W. H. Coughtrie
  • B. Burchell


Liver biopsy samples were obtained from eight Crigler-Najjar patients. Bilirubin UDPGT activity, assayed by a microassay with HPLC analysis, was not detectable in type I livers, and low levels (9–26% of controls) of monoglucuronide conjugates only were observed in type II livers. 1-Naphthol UDPGT activity was normal in most patients, where membrane integrity was maintained by correct sample procurement and preparation. Our data on type II livers suggest that a defect in UDPGA transport is an unlikely cause of the hyperbilirubinaemia, but reduced affinity for UDPGA was observed in one sample. Analysis of four patient liver samples by immunoblot analysis revealed the heterogeneous nature of this inherited disease within the patient population, and one sample where 1-naphthol UDPGT activity was considerably reduced appeared to correlate with the non-detection of a phenol UDPGT protein. Progress towards a molecular genetic diagnosis of Crigler-Najjar syndromes is discussed.


Phenol Bilirubin Molecular Basis Liver Biopsy HPLC Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arias, I. M., Gartner, L. M., Cohen, M., Ezzer, J. B. and Levi, A. J. Chronic non-hemolytic hyperbilirubinemia with glucuronyl transferase deficiency.Am. J. Med. 47 (1969) 395–409Google Scholar
  2. Black, M., Billing, B. H. and Heirwegh, K. P. M. Determination of bilirubin UDP-glucuronyl transferase activity in needle biopsy specimens of human liver.Clin. Chim. Acta 29 (1970) 27–35Google Scholar
  3. Blanckaert, N. Analysis of bilirubin and bilirubin mono- and di-conjugates.Biochem. J. 185 (1980) 115–128Google Scholar
  4. Bloomer, J. R., Berk, P. D., Howe, R. B. and Berlin, N. I. Bilirubin metabolism in congenital non-haemolytic jaundice.Pediatr. Res. 5 (1971) 256–264Google Scholar
  5. Bock, K. W., Lilienblum, W. and Von Bahr, C. Studies on UDP-glucuronosyltransferase activities in human liver microsomes.Drug Metab. Disp. 12 (1984) 93–97Google Scholar
  6. Burchell, A. Molecular pathology of glucose-6-phosphatase.FASEB J. 4 (1990) 2978–2988Google Scholar
  7. Burchell, B. and Coughtrie, M. W. H. UDP-glucuronosyltransferases.Pharmacol. Ther. 43 (1989) 261–289Google Scholar
  8. Burchell, B. and Coughtrie, M. W. H. Polymorphism of glucuronidation in man. In Alvan, G., Balant, L. P., Bechtel, P. R., Boobis, A. R., Grann, L. F. and Pithan, K. (eds.),European Consensus Conference on Pharmacogenetics, Cost B1, Commission of European Communities, Luxembourg, 1990, pp. 153–160Google Scholar
  9. Burchell, B., Weatherill, P. J. and Berry, C. Evidence indicating that UDP-N-acetylglucosamine does not appear to stimulate hepatic microsomal UDP-glucuronosyltransferase by interaction with the catalytic unit of the enzyme.Biochim. Biophys. Acta 735 (1983) 309–313Google Scholar
  10. Burchell, B., Coughtrie, M. W. H., Jackson, M. R., Shepherd, S. R. P., Harding, D. and Hume, R. Genetic deficiency of bilirubin glucuronidation in rats and humans.Mol. Aspects Med. 9 (1987) 429–455Google Scholar
  11. Coughtrie, M. W. H., Burchell, B., Leaky, J. E. A. and Hume, R. The inadequacy of perinatal glucuronidation: Immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes.Mol. Pharmacol. 34 (1988) 729–735Google Scholar
  12. Coughtrie, M. W. H., Ask, B., Rane, A., Burchell, B. and Hume, R. The enantioselective glucuronidation of morphine in rats and humans.Biochem. Pharmacol. 38 (1989) 3273–3280Google Scholar
  13. Crigler, J. F. and Najjar, V. A. Congenital familial non-hemolytic jaundice with kernicterus.Pediatrics 10 (1952) 169–179Google Scholar
  14. El Awady, M., Roy Chowdhury, J., Kesari, K., van Es, H., Jansen, P. L. M., Lederstein, M., Arias, I. M. and Roy Chowdhury, N. Mechanism of the lack of induction of UDP-glucuronosyltransferase activity in Gunn rats by 3-methylcholanthrene.J. Biol. Chem. 265 (1990) 10752–10758Google Scholar
  15. Gollan, J. L., Huang, S. N., Billing, B. and Sherlock, S. Prolonged survival in three brothers with severe type 2 Crigler-Najjar syndrome. Ultrastructural and metabolic studies.Gastroenterology 68 (1975) 1543–1555Google Scholar
  16. Iyanagi, T., Watanabe, T. and Uchiyama, Y. The 3-methylcholanthrene-inducible UDP-glucuronosyltransferase deficiency in the hyperbilirubinaemic rat (Gunn rat) is caused by a −1 frameshift mutation.J. Biol. Chem. 264 (1989) 21302–21307Google Scholar
  17. Jackson, M. R., McCarthy, L. R., Hardy, D., Wilson, S., Coughtrie, M. W. H. and Burchell, B. Cloning of a human liver UDP-glucuronosyltransferase cDNA.Biochem. J. 242 (1987) 581–588Google Scholar
  18. Labrune, P., Myara, A., Hennion, C., Gout, J. P., Trivin, F. and Odievre, M. Crigler-Najjar type II disease inheritance: a family study.J. Inher. Metab. Dis. 12 (1989) 302–306Google Scholar
  19. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T.Nature 227 (1970) 680–685Google Scholar
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193 (1951) 265–275Google Scholar
  21. Muraca, M. and Blanckaert, N. Liquid chromatographic assay and identification of monoand diester conjugates of bilirubin in normal serum.Clin. Chem. 29 (1983) 1767–1771Google Scholar
  22. Odell, G. B., Mogilevsky, W. S. and Gourley, G. R. High performance liquid chromatographic analysis of bile pigments as their native tetrapyrroles and as their dipyrrolic azosulfanilate derivatives.J. Chromatog. 529 (1990) 287–298Google Scholar
  23. Onishi, S., Itoh, S., Kawade, N., Isobe, K. and Sugiyama, S. An accurate and sensitive analysis by high pressure liquid chromatography of conjugated and unconjugated bilirubin IX in various biological fluids.Biochem. J. 185 (1980) 281–284Google Scholar
  24. Otani, G., Abou-el-Makarem, M. M. and Bock, K. W. UDP-Glucuronsyltransferase in perfused rat liver and in microsomes. III — Effects of galactosamine and carbon tetrachloride on the glucuronidation of 1-naphthol and bilirubin.Biochem. Pharmacol. 25 (1976) 1293–1297Google Scholar
  25. Owens, D. and Evans, J. Population studies on Gilbert's syndrome.J. Med. Genet. 12 (1975) 152–156Google Scholar
  26. Puig, J. F. and Tephly, T. R. Isolation and purification of rat liver morphine UDP-glucuronosyltransferase.Mol. Pharmacol. 30 (1986) 558–565Google Scholar
  27. Sato, H., Koiwai, O., Tanabe, K. and Kashiwamota, S. Isolation and sequencing of rat liver bilirubin UDP-glucuronosyltransferase cDNA: Possible alternative splicing of a common primary transcript.Biochem. Biophys. Res. Commun. 169 (1990) 260–264Google Scholar
  28. Schmid, R. and McDonagh, A. F. Hyperbilirubinemia. In: Stanbury, J. B., Wyngaarden, J. B. and Fredrickson, D. S. (eds.),The Metabolic Basis of Inherited Disease, 4th edn., McGraw-Hill, New York, 1978, pp. 1221–57Google Scholar
  29. Shepherd, S. R. P., Baird, S. J., Hallinan, T. and Burchell, B. An investigation of the transverse topology of bilirubin UDP-glucuronosyltransferase in rat hepatic endoplasmic reticulum.Biochem. J. 259 (1989) 617–620Google Scholar
  30. Strebel, L. and Odell, G. B. Bilirubin uridine diphospho-glucuronosyltransferase in rat liver microsomes: Genetic variation and maturation.Pediatr. Res. 5 (1971) 548–59Google Scholar
  31. Svensson, J-O., Rane, A., Sawe, J. and Sjoqvist, F. Determination of morphine, morphine-3-glucuronide and (tentatively) morphine-6-glucuronide in plasma and urine using ion-pair, high performance liquid chromatography.J. Chromatog. 230 (1982) 427–432Google Scholar
  32. Szabo, L. and Ebrey, P. B. Studies on the inheritance of Crigler-Najjar syndrome by the menthol test.Acta Paediatr. Hung. 4 (1963) 153–158Google Scholar
  33. Towbin, H., Staehelin, T. and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications.Proc. Natl. Acad. Sci. USA 76 (1979) 4350–4354Google Scholar
  34. Van Es, H., Goldhoorn, B., Paul-Abrahamse, M., Oude-Elferink, R. P. J. and Jansen, P. L. M. Immunochemical analysis of UDP-glucuronosyltransferase in four patients with Crigler-Najjar type I syndrome.J. Clin. Invest. 85 (1990) 1199–1205Google Scholar
  35. Van Roy, P. and Heirwegh, K. P. M. Determination of bilirubin glucuronide and assay of glucuronosyltransferase with bilirubin as acceptor.Biochem. J. 107 (1968) 507–518Google Scholar
  36. Vanstapel, F. and Blanckaert, N. Topology and regulation of bilirubin UDP-glucuronosyltransferase in sealed native microsomes from rat liver.Arch. Biochem. Biophys. 263 (1988) 216–225Google Scholar
  37. Wolkoff, A. W., Roy Chowdhury, J. and Arias, I. M. Hereditary jaundice and disorders of bilirubin metabolism. In: Stanbury, J.B., Wyngaarden, J. B. and Fredrickson, D. S. (eds.),The Metabolic Basis of Inherited Disease, 5th edn., McGraw-Hill, New York, 1983, pp. 1385–1420Google Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1991

Authors and Affiliations

  • K. J. Robertson
    • 1
  • D. Clarke
    • 1
  • L. Sutherland
    • 1
  • R. Wooster
    • 1
  • M. W. H. Coughtrie
    • 1
  • B. Burchell
    • 1
  1. 1.Department of Biochemical Medicine, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK

Personalised recommendations