Skip to main content
Log in

Mathematical modelling for biomagnetic localization

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Non-invasive biomagnetic measurements are feasible for obtaining functional information concerning the electrical activity of the human heart and brain. These methods have turned out to be promising in localizing various bioelectric sources in the body. For example, in magnetocardiographic studies of localizing arrhythmogenic tissue and both normal and abnormal conduction pathways between the atria and the ventricles, the best accuracies reported are comparable to the results obtained by the invasive methods. We consider here basic principles of biomagnetic source localization methods, focusing on the magnetocardiographic mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erné SN. High resolution magnetocardiography: modeling and sources localization. Med Biol Eng Comput 1985; 23: 1447–50.

    Google Scholar 

  2. Katila T, Maniewski R, Mäkijärvi M, Nenonen J, Siltanen P. On the accuracy of source localization in cardiac measurements. Phys Med Biol 1987; 32: 125–31.

    Google Scholar 

  3. Fenici RR, Masselli M, Lopez L, Melillo G. Magnetocardiographic localization of arrhythmogenic tissue. In: Atsumi K, Kotani M, Ueno S, Katila T, Williamson SJ, editors. Biomagnetism '87. Tokyo: Tokyo Denki University Press, 1988: 282–5.

    Google Scholar 

  4. Fenici RR, Melillo G. Biomagnetic imaging in the cardiac catheterization laboratory. In: Williamson SJ, Hoke M, Stroink G, Kotani M, editors. Advances in biomagnetism. New York: Plenum Press, 1990: 409–15.

    Google Scholar 

  5. Oeff M, Erné SN. Invasive measurements to validate magnetic localization of ventricular preexcitation in Wolff-Parkinson-White syndrome. In: Erné SN, Romani GL, editors. Advances in biomagnetism, functional localization: A challenge for biomagnetism. Singapore: World Scientific Publishing Co, 1989: 62–80.

    Google Scholar 

  6. Nenonen J, Katila T, Leiniö M, Mäkijärvi M, Montonen J, Siltanen P. Magnetocardiographic functional localization using current multipole models. IEEE Trans Biomed Eng 1991; 38: 648–657.

    Google Scholar 

  7. Nenonen J, Purcell C, Horacek BM, Stroink G, Katila T. Magnetocardiographic functional localization using a current dipole in a realistic torso. IEEE Trans Biomed Eng 1991; 38: 658–664.

    Google Scholar 

  8. Schmitz L, Oeff M, Erné SN. Localization of arrhythmogenic areas in the human heart. In: Atsumi K, Kotani M, Ueno S, Katila T, Williamson SJ, editors. Biomagnetism '87. Tokyo: Tokyo Denki University Press, 1988: 286–9.

    Google Scholar 

  9. Plonsey R. Bioelectric phenomena. New York: McGraw-Hill, 1969.

    Google Scholar 

  10. Plonsey R. Generation of magnetic fields by the human body (theory). In: Erné SN, Hahlbom HD, Lübbig H, editors. Biomagnetism. Berlin: Walter de Gruyter, 1981: 177–205.

    Google Scholar 

  11. Geselowitz DB. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Trans Magn 1970; 6: 346–7.

    Google Scholar 

  12. Barnard AC, Duck IM, Lynn MS, Timlake WP. The application of electromagnetic theory to electrocardiography II: the numerical solution to the integral equations. Biophys J 1967; 7: 463–91.

    Google Scholar 

  13. Horacek BM. Digital model for studies in magnetocardiography. IEEE Trans Magn 1973; 9: 440–4.

    Google Scholar 

  14. Grynszpan F, Geselowitz DB. Model studies of the magnetocardiogram. Biophys J 1973; 13: 911–925. Cuffin BN, Cohen D. Magnetic fields of a dipole in special volume conductor shapes. IEEE Trans Biomed Eng 1977; 24: 372–81.

    Google Scholar 

  15. Horacek BM, Purcell C, Lamothe R, Leon LJ, Merritt R, Kafer C, et al. The effect of torso geometry on magnetocardiographic isofield maps. Phys Med Biol 1987; 32: 121–4. Purcell C, Stroink G, Horacek BM. Effect of torso boundaries on electric potential and magnetic field of a dipole. IEEE Trans Biomed Eng 1988; 35: 671–7.

    Google Scholar 

  16. Varpula T, Katila T, Poutanen T, Seppänen M.In vivo study of the effect of the secondary currents on the MCG. In: Weinberg H, Stroink G, Katila T, editors. Biomagnetism: applications and theory. New York: Pergamon Press, 1985: 180–5.

    Google Scholar 

  17. Katila T, Karp P. Magnetocardiography: morphology and multipole presentations. In: Williamson SJ, Romani GL, Kaufman L, Modena I, editors. Biomagnetism, an interdisciplinary approach. New York: Plenum Press, 1983: 237–63.

    Google Scholar 

  18. Siltanen P. Magnetocardiography. In: MacFarlane PW, Lawrie TDV, editors. Comprehensive electrocardiography. London: Pergamon Press, 1988; 38.

    Google Scholar 

  19. Roth BJ, Guo WQ, Wikswo JP Jr. The effects of spiral anisotropy on the electric potential and the magnetic field at the apex of the heart. Mathem Biosc 1988; 88: 191–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nenonen, J., Katila, T. Mathematical modelling for biomagnetic localization. Int J Cardiac Imag 7, 177–184 (1991). https://doi.org/10.1007/BF01797750

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01797750

Key words

Navigation