Skip to main content
Log in

Parameters that influence accuracy and precision of quantitative coronary arteriography

  • Articles
  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

The limited resolution of any imaging system causes edge blurring of objects acquired with X-ray. In digital angiography, this effect combined with noise gives rise to systematic and random errors in the determination of vessel dimensions. The influence of bandwidth limitation on the estimation of tube diameter is established by a theoretical approach: it leads to over and underestimations of catheter and vessel diameter dimensions. Therefore a correction is proposed that counterbalances the point spread function (PSF) offset. The residual inaccuracy and the variability of measurement of phantom tubes are analyzed and evaluated in controlled conditions. Some of the parameters which govern their extent are identified: field-of-view, catheter size, concentration of contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Bertrand, J.M. Lablanche, C. Bauters, F. Leroy, E. Mac Fadden. Discordant results of visual and quantitative estimates of stenosis severity before and after angioplasty. Catheterization and Cardiovascular Diagnosis 1993; 26: 1–6.

    Google Scholar 

  2. G.B.J. Mancini, S.B. Simon, M.J. McGillem, M.T. Lefree H.Z. Friedman, R.A. Vogel. Automated quantitative coronary arteriography: morphologic and physiologic validation in vivo of rapid digital angiographic method. Circulation 1987; 75: 452–460.

    Google Scholar 

  3. S.E. Nissen, C.L. Grines, J.C. Gurley, K. Sublett et al. Application of a new phase-array ultrasound imaging catheter in the assessment of vascular dimension. In vivo comparison to cineangiography. Circulation 1990; 91: 600–606.

    Google Scholar 

  4. C.J. Davidson, K.H. Seikh, J.K. Harrison. Intravascular ultrasonography versus digital subtraction angiography: a human in vivo comparison of vessel size and morphology. J Am Coll Cardiol 1990; 16: 633–636.

    Google Scholar 

  5. G. Finet, E. Maurincomme, A. Tabib, R. Roriz, I. Magnin, P. Douek, M. Amiel. Artifacts in intravascular ultrasound imaging: analyses and implications. Ultrasound Med Biol 1993; 19(7): 533–547.

    Google Scholar 

  6. G. Finet, E. Maurincomme, P. Douek, A. Tabib, M. AmieL, J. Beaune. Three-layer appearance of the arterial wall in intravascular ultrasound imaging: artifact or reality ? Implications for accurate measurements in quantitative intravascular ultrasound. Echocardiography 1994; 11: 343–63.

    Google Scholar 

  7. J.H.C. Reiber, G. Koning, C.D. von Land, P.M.J. van der Zwet. Why and how should QCA systems be validated? Reiber JHC & Serruys PW eds: Progress in quantitative coronary arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994: 33–48.

    Google Scholar 

  8. A.V.G. Bruschke, I. Padmos, B. Buis, A. van Benthem. Arteriographic evaluation of small coronary arteries. JACC 1990; 15: 784–789.

    Google Scholar 

  9. R.L. Kirkeeide, P. Fung, R.W. Smalling, K.L. Gould. Automated evaluation of vessel diameters from arteriograms. Computers in Cardiology, 1982 IEEE: 215–218.

    Google Scholar 

  10. J.M. Boone, O. Nalcioglu, W.W. Roeck, Y. Wang, A.W. Lando. The influence of point spread functions (psf) in the determination of coronary stenosis by video densitometry. Computers in Cardiology, 1982 IEEE: 227–229

  11. A. Macovski. Medical Imaging Systems. Prentice Hall, New Jersey, 1983.

    Google Scholar 

  12. M.L. Giger, K. Doi. Analysis of MTFs, Wiener spectra, and Signal-to- noise ratios of digital radiographic imaging systems. Doi K., Lanzi L. & Lin PJP eds. Recent developments in digital imaging. American Institute of Physics, 1985; 60–81.

  13. R.F. Wagner, K.E. Weaver, E.W. Denny, R.G. Bostrom. Toward a unified view of radiological imaging systems. Part I: Noiseless images. Medical Physics, Vol 1, No 1, 1974; 11–24.

    Google Scholar 

  14. J. Sandrik. The video camera in a digital fluoroscopic imaging systems. Doi K., Lanzi L. & Lin PJP eds. Recent developments in digital imaging. American Institute of Physics, 1985; 540–565.

  15. G.J. Beauman, J.H.C. Reiber, G. Koning, R.A. Vogel. Comparisons of QCA core laboratory analyses: inter-laboratory variability determined from common analyses of an arterial phantom. 5th International Symposium on Coronary Arteriography. Rotterdam, June 28–30, 1993.

  16. A. Boller, J. Lesperance, D. Revel, J.L. Marchand, M. Amiel. Analyse quantitative automatique d'une sténose vasculaire. Arch Mal Coeur 1989; 82: 381–390.

    Google Scholar 

  17. J. Lienard, A. Nitenberg. A Computer Method for Automatic Quantification of Coronary Artery Dimensions. 4th International Symposium on Coronary Arteriography. Rotterdam, June 23–25, 1991: 174.

  18. Ch.J.M. Vrints, H. Bult, J. Bosmans, A.G. Herman, J.P. Snoeck. Paradoxical Vasoconstriction as Result of Acetylcholine and Serotonin in Diseased Human Coronary Arteries. Euopean Heart Journal. 1992; 13: 824–831.

    Google Scholar 

  19. J.H.C. Reiber. Morphologic and densitometric quantitation of coronary stenoses; an overview of existing quantitation techniques. Reiber JHC & Serruys PW eds: New Developments in Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1988: 34–88.

    Google Scholar 

  20. J.H.C. Reiber. An overview of coronary quantitation techniques as of 1989. Reiber JHC & Serruys PW eds: Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991: 55–132.

    Google Scholar 

  21. J.H.C. Reiber, P.M.J. van der Zwet, C.D. von Land, G. Koning, B. van Meurs, B. Buis, A.E. van Voorthuisen. Quantitative coronary arteriography: equipment and technical requirements. Reiber JHC & Serruys PW eds: Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993: 75–111.

    Google Scholar 

  22. K. Shmueli, W.R. Brody, A. Macovski. Estimation of blood vessel boundaries in X-ray images. Optical Engineering 1983; 22: 110–116.

    Google Scholar 

  23. M.A. Furst, P.E. Caines. Edge Detection with image enhancement via Dynamic programming. Computer Vision, Graphics, and Image Processing 1986; 33: 263–279

    Google Scholar 

  24. C.J. Kooijman, J.H.C. Reiber, J.J. Gerbrands, J.C.H. Schuurbiers, C.J. Slager, A. den Boer, P.W. Serruys. Computer-aided quantitation of the severity of coronary obstructions from single view cineangiograms. IEEE 1982; 59–64.

  25. J.H.C. Reiber, C.D. von Land, G. Koning, P.M.J. van der Zwet, R.C.M. van Houdt, M.J. Schalij, J. Lesperance. Comparison of accuracy and precision of quantitative coronary arterial analysis between cinefilm and digital systems. Reiber JHC & Serruys PW eds: Progress in Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994: 67–85.

    Google Scholar 

  26. G.J. Beauman, J.H.C. Reiber, G. Koning, R.C.M. van Houdt, R.A. Vogel. Angiographic core laboratory analyses of arterial phantom images: Comparative evaluations of accuracy and precision. Reiber JHC & Serruys PW eds: Progress in Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994: 87–104.

    Google Scholar 

  27. E. Ribichini, G. Steffenino, A. Dellavalle, P. Mina, R. Cerati, M. Dalmasso, E. Uslenghi. On-line quantitative coronary analysis in clinical practice: one step closer to reality ? Catheterization and Cardiovascular Diagnosis 1994; 31: 102–109.

    Google Scholar 

  28. D.M. Herrington, G.A. Walford, T.A. Pearson. Issues of validation in quantitative coronary angiography. Reiber JHC & Serruys PW eds: New Developments in Quantitative Coronary Arteriography. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1988: 153–166.

    Google Scholar 

  29. B. Lavayssiere, J. Lienard, J.L. Marchand. RII geometrical distortion modelling and calibration. CAR 87 Berlin: Springer Verlag 1987: 225–229.

    Google Scholar 

  30. R.P. Hirsch, R.K. Riegelman. Statistical First Aid. Interpretation of Health Research Data. Boston: Blackwell Scientific Publications, 1992.

    Google Scholar 

  31. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Kogakusha, Ltd. 1965.

  32. R. Kakarala, A.O. Hero. On achievable accuracy in edge localization. IEEE trans. PAMI July 1992; 14, 7:777–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finet, G., Liénard, J. Parameters that influence accuracy and precision of quantitative coronary arteriography. Int J Cardiac Imag 12, 271–287 (1996). https://doi.org/10.1007/BF01797741

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01797741

Key words

Navigation