Molecular and General Genetics MGG

, Volume 99, Issue 3, pp 219–247 | Cite as

Streptomycin-abhängige Mutanten vonProteus mirabilis: Ihre Genetik, Suppression und Modifikation

  • J. Hofemeister
  • H. Böhme


  1. 1.

    Mutations toward streptomycin dependence occur in structural and functional heterogenous subunits of the streptomycin locus, which have been characterized as nonidentical alleles.str-d mutants of different, nonidentical alleles differ among themselves with respect to: a) the degree of depression of enzyme synthesis, the reaction toward sub-and superoptimal streptomycin concentrations, and their streptomycin and amino acid dependence, respectively, when grown in minimal medium; b) their allelespecific reaction with certain alleles of the genetic suppressorsu-str. They recombine among themselves with low frequency.

  2. 2.

    No specific subunits for thestr-d orstr-r mutation have been found within the complexstr-locus. It has been shown that a distinctstr-d allle may revert intraallelic to thestr-r d orstr-s d condition. In addition to intraallelic reversions, suppressor mutations cause streptomycin independence.

  3. 3.

    Thestr-d mutation is characterized by pleiotropic changes of the protein synthesis apparatus. It has been suggested that these changes affect the translation process and cause the dependence on streptomycin which acts as misreading inducing agent.

  4. 4.

    The function of streptomycin is allelespecific and represents a case of informational suppression.

  5. 5.

    The majority of streptomycin independent revertants is streptomycin-sensitive as the wild-type is. The major part of these revertants represent suppressor mutants genetically, and they are phenotypical either auxotrophic or noncompletely prototrophic.

  6. 6.

    Three groups of nonidentical suppressor alleles have been identified; between two of them (su-str A and-B) recombination occur with low frequency, while mutants of groupA orB recombine with mutants of groupsu-str C with higher frequency.A, B andC are thought to be components of one complex suppressor locussu-str.

  7. 7.

    The function of the suppressorsu-str is allelespecific, i.e. a certainsu-str allele either suppresses only distinctstr-d alleles or gives rise in combination with otherstr-d alleles to differences in the suppressor phenotype (auxotrophy or noncomplete prototrophy).

  8. 8.

    Auxotrophic and noncompletely prototrophic suppressor mutants differ in the effectivity of enzyme synthesis. These differences are interpreted as an expression of different degrees of compensation by the function of the suppressor of thestr-d allele induced misreading. Auxotrophy as well as noncomplete prototrophy are, therefore, integrated components or results of the allelespecific suppressor function.

  9. 9.

    The geneic suppressorsu-str has been characterized as an informational suppressor.

  10. 10.

    The suppressorsu-str interferes with the streptomycin indifference determining allelestr-r and with the allelesstr-s andstr-s d ; in the first case the effect is a change in the degree of resistance, in the latter case, a depression of growth rate.

  11. 11.

    Suppressor mutants mutate with a generally high frequency to a limited streptomycin resistance. This change is caused by mutation of a modifier genemod str .

  12. 12.

    Within the genome of suppressor mutants,mod str determines a limited streptomycin resistance; when being present in combination with the unsuppressedstr-d alleles,mod str acts in a similar way assu-str alleles; in the wild-type genomemod str does not function as a resistance marker. These facts show that the function ofmod str is genome specific.

  13. 13.

    It is supposed that the function ofmod str like that ofsu-str is a result of a modification of certain ribosomal components.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhme, H.: Streptomycin-abhängige Mutanten vonProteus mirabilis und ihre Verwendung in Mutationsversuchen mit Manganchlorid. Biol. Zbl.80, 5–32 (1961a).Google Scholar
  2. —: Über Rückmutationen und Suppressormutationen beiProteus mirabilis. Z. Vererbungsl.92, 197–204 (1961b).Google Scholar
  3. —: Genetic analysis of streptomycin dependence inProteus mirabilis. Proc. XI. Intern. Congr. of Genetics, vol. 1, p. 33 (1963a).Google Scholar
  4. —: Transduction of prototrophy to auxotrophic mutants ofProteus mirabilis. Biochem. biophys. Res. Commun.12, 137–139 (1963b).Google Scholar
  5. —: Über den Einfluß von Mutationen im Genom des Donor-Stammes auf die Transduktions-fähigkeit desProteus-Phagen π1. Abh. dtsch. Akad. Wiss. Berlin, Kl. Med., Nr.4, 107–111 (1964).Google Scholar
  6. Brownstein, B. L., andL. J. Lewandowski: A mutation suppressing streptomycin dependence. I. An effect on ribosome function. J. molec. Biol.25, 99–109 (1967).Google Scholar
  7. Cox, E. C., J. R. White, andJ. G. Flaks: Streptomycin action and the ribosome. Proc. nat. Acad. Sci. (Wash.)51, 703–709 (1964).Google Scholar
  8. Davies, J. E.: Studies on the ribosomes of streptomycin-sensitive and resistant strains ofE. coli. Proc. nat. Acad. Sci. (Wash.)51, 659–664 (1964).Google Scholar
  9. —,W. Gilbert, andL. Gorini: Streptomycin, suppression, and the code. Proc. nat. Acad. Sci. (Wash.)51, 883–890 (1964).Google Scholar
  10. —,L. Gorini, andB. Davis: Misreading of RNA code words induced by aminoglycoside antibiotics. J. molec. Pharmacol.1, 93–106 (1965).Google Scholar
  11. Demerec, M., andP. E. Hartmann: Complex loci in microorganisms. Ann. Rev. Microbiol.13, 377–406 (1959).Google Scholar
  12. Demerec, M., E. Wallace, E. M. Witkin, andG. Bertani: Genetics of streptomycin resistance inEscherichia coli. In: The gene. Carnegie Inst. Wash. Yr. Bk.48, 154–166 (1949).Google Scholar
  13. Demerec, M., E. Witkin, B. Catlin, J. Flint, W. Belser, C. Dissoway, F. Kennedy, N. Meyer, andA. Schwartz: In: The gene. Carnegie Inst. Wash. Yr. Bk.48, 144–157 (1950).Google Scholar
  14. Desai, I. D., andW. J. Polglase: Threonine dehydratase of streptomycin-dependentEscherichia coli K-12. Biochim. biophys. Acta (Amst.)114, 642–644 (1966).Google Scholar
  15. Erdös, T., andA. Ullmann: Effect of streptomycin on the incorporation of amino acids labelled with C14 into RNA and protein in cell-free systems of aMycobacterium. Nature (Lond.)183, 618–619 (1959).Google Scholar
  16. Flaks, J. G., E. C. Cox, M. L. Witting, andJ. R. White: Polypeptide synthesis with ribosomes from streptomycin-resistant and dependentE. coli. Biochem. biophys. Res. Commun.7, 390–393 (1962).Google Scholar
  17. Fraser, S. J., andW. C. McDonald: Analysis of mutations from streptomycin dependence to nondependence inBacillus sublilis by transformation. J. Bact.92, 1582–1583 (1966).Google Scholar
  18. Gabor, M.: Transformation of streptomycin markers in rough strains ofRhizobium lupinii. II. The relation between the determinant of stroptomycin dependence and those for streptomycin resistance and sensitiveness. Genetics52, 905–913 (1965).Google Scholar
  19. Gartner, T. K., andE. Orias: Effect of mutation to streptomycin resistance on the rate of translation of mutant genetic information. J. Bact.91, 1021–1028 (1966).Google Scholar
  20. Goldschmidt, E. P., T. S. Matney, andH. T. Bausum: Genetic analysis of mutations from dependence to independence inSalmonella typhimurium. Genetics47, 1475–1487 (1962).Google Scholar
  21. Gorini, L., andJ. R. Beckwith: Suppression. Ann. Rev. Microbiol.20, 401–422 (1966).Google Scholar
  22. —: Ribosomal ambiguity. Cold Spr. Harb. Symp. quant. Biol.31, 637–664 (1966).Google Scholar
  23. —: Phenotypic repair by streptomycin of defective genotyps inE. coli. Proc. nat. Acad. Sci. (Wash.)51, 487–493 (1964).Google Scholar
  24. Hashimoto, K.: Streptomycin resistance inEscherichia coli analysed by transduction. Genetics45, 49–62 (1960)Google Scholar
  25. Landman, O. E., andW. Buchard: The mechanism of action of streptomycin as revealed by normal and abnormal division in streptomycin-dependentSalmonella. Proc. nat. Acad. Sci. (Wash.)48, 219–228 (1962).Google Scholar
  26. Leboy, P. S., E. C. Cox andG. Flaks: The chromosomal site specifying a ribosomal protein inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)52, 1367–1374 (1964).Google Scholar
  27. Lederberg, E. M., L. Cavalli-Sforza, andJ. Lederberg: Interaction of streptomycin and a suppressor for galactose fermentation inE. coli K-12. Proc. nat. Acad. Sci. (Wash.)51, 678–682 (1964).Google Scholar
  28. Lewandowski, L. J., andB. L. Brownstein: An altered pattern of ribosome synthesis in a mutant ofE. coli. Biochem. biophys. Res. Commun.25, 554–561 (1966).Google Scholar
  29. Medill, M. A., andD. J. O'Kane: A synthetic medium for the L type colonies ofProteus. J. Bact.68, 530–533 (1954).Google Scholar
  30. Newcombe, H. B., andM. H. Nyholm: The inheritance of streptomycin resistance and dependence in crosses ofEscherichia coli. Genetics35, 603–611 (1950).Google Scholar
  31. Pestka, S., R. Marshall andM. Nirenberg: RNA-codewords and protein synthesis. V. Effect of streptomycin on the formation of ribosome-sRNA-complexes. Proc. nat. Acad. Sci. (Wash.)53, 639–646 (1965).Google Scholar
  32. Polglase, W. J., S. Peretz, andS. Roote: Adaptive enzyme formation by dihydrostreptomycin-dependentEscherichia coli. Canad. J. Biochem.34, 558–562 (1957).Google Scholar
  33. —: Regulation of acetohydroxy acid synthetase in streptomycin-dependentEscherichia coli. Canad. J. Biochem.44, 599–606 (1966).Google Scholar
  34. Rausa, L., andY. C. Strasters: Protein synthesis in a streptomycin-dependent strain ofStaphylococcus aureus. G. Microbiol.11, 175–182 (1962).Google Scholar
  35. Speyer, J. E., P. Lengyel, andC. Basilio: Ribosomal localization of streptomycin sensitivity. Proc. nat. Acad. Sci. (Wash.)48, 684–686 (1962).Google Scholar
  36. Spotts, C. R.: Physiological and biochemical studies on streptomycin dependence inEscherichia coli. J. gen. Microbiol.28, 347–365 (1962).Google Scholar
  37. Staehelin, T., andM. Meselson: Determination of streptomycin sensitivity by a structural component of the 30S ribosome ofEscherichia coli. J. molec. Biol.19, 207–210 (1966).Google Scholar
  38. Swanstrom, M., andM. H. Adams: Agar layer method for production of high titer phage stocks. Proc. Soc. exp. Biol. (N.Y.)78, 372–375 (1951).Google Scholar
  39. Szybalski, W., andJ. Cocito-Vandermeulen: Neamine and streptomycin dependence inE. coli. Bact. Proc.1958, 37–38.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • J. Hofemeister
    • 1
  • H. Böhme
    • 1
  1. 1.Institut für Kulturplanzenforschung, Gatersleben, der Deutschen Akademie der Wissenschaften zu BerlinGasterslebenDeutschland

Personalised recommendations