Advertisement

Czechoslovak Journal of Physics B

, Volume 29, Issue 7, pp 718–736 | Cite as

Brueckner calculations in harmonic oscillator basis

II. The ground state of the4He nucleus
  • J. Blank
Article

Abstract

The binding energy (b.e.), r.m.s. radius and charge form factor of the4He nucleus are calculated for the Hamada-Johnston potential using the method developed in part I of this study. The single-particle spectrum is derived from that of a harmonic oscillator by means of an overall shiftC and state-dependent shiftsηh of occupied levels. Theη's are chosen self-consistently and the dependence of results onC and oscillator frequencyΩ is examined. Third-order diagrams in the BG expansion for energy are explicitly calculated (except those belonging to the three-particle cluster) and their importance for getting a weak dependence of the b.e. onC is demonstrated. Dependence onΩ remains rather strong; arguments are given in favour of the choice ofΩ that minimizes second-order diagrams. Effects due to the motion of the centre of mass of the nucleus are eliminated by subtracting 〈TCM〉 calculated up to the second order, the usual zero-order approximation of 〈TCM〉 being shown to overestimate the b.e. by 3–5 MeV. The computed b.e. and r.m.s. radius represent about 50% and 110% of experimental values respectively. The form factorFch(q) was computed for 0≦q2≦20 fm−2; the first-order approximation is a good fit to experimental data, while in the second order diagrams appear that worsen the fit forq2 > >10 fm−2.

Keywords

Experimental Data Binding Energy Form Factor Harmonic Oscillator Weak Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [2]
    Becker R. L., MacKellar A. D., Morris B. M., Phys. Rev.174 (1968), 1264.Google Scholar
  2. [3]
    Kallio A., Day B. D., Nucl. Phys.A 124 (1969), 177.Google Scholar
  3. [4]
    Blank J., Czech. J. Phys.B 19 (1969), 572.Google Scholar
  4. [5]
    Blank J., Czech. J. Phys.B 19 (1969), 748.Google Scholar
  5. [6]
    Gmitro M., Sotona M., Phys. Rev.C 2 (1970), 356;Google Scholar
  6. [6a]
    Sotona M., Czech. J. Phys.B 27 (1977), 386.Google Scholar
  7. [8]
    Köhler H. S., Nucl. Phys.A 98 (1967), 569.Google Scholar
  8. [8]a
    Baranger M.,in Proceedings Int. School Phys. Enrico Fermi (Eds. M. Jean, R. A. Ricci.) Academic Press, New York 1969.Google Scholar
  9. [10]
    Úlehla I., Nguyen N. T., Czech. J. Phys.B 26 (1976), 725.Google Scholar
  10. [11]
    Úlehla I., Nguyen N. T., Nucl. Phys.A 260 (1976), 253.Google Scholar
  11. [15]
    Woodring J. W., MacKellar A. D., Tripathi R. K., Nucl. Phys.A 228 (1974), 345.Google Scholar
  12. [18]
    Hamada T., Johnston I. D., Nucl. Phys.34 (1962), 382.Google Scholar
  13. [19]
    Halderson D. W., Goldhammer P., Phys. Rev.C 15 (1977), 394.Google Scholar
  14. [20]
    Zabolitzky J. G., Nucl. Phys.A 228 (1974), 285.Google Scholar
  15. [21]
    Clement D. M., Nucl. Phys.A 174 (1971), 561.Google Scholar
  16. [22]
    Rajaraman R., Bethe H. A., Rev. Mod. Phys.39 (1967), 745.Google Scholar
  17. [23]
    Brandow B. H., Phys. Rev.152 (1966), 863.Google Scholar
  18. [24]
    Stingl M. M., Kirson M. W., Nucl. Phys.A 137 (1969), 289.Google Scholar
  19. [25]
    Blank J.,HoŘejší J., Acta Univ. Carolinae-Math. et Phys. (to be published).Google Scholar
  20. [26]
    Mang H. J., Wild W., Zs. Phys. 154 (1959), 182.Google Scholar
  21. [27]
    Janssens T., Hofstadter R., Hughes E. B., Yearian M. R., Phys. Rev.142 (1966), 922;Google Scholar
  22. [27a]
    Bilenkaya S. I., Kazarinov Yu. M., Lapidus L. I., Zhurnal exp. teor. fiz.61 (1971), 2225.Google Scholar
  23. [28]
    Aguillera-Navaro V. C., Moshinsky M., Yeh W. W., Ann. Phys. (N. Y.)51 (1969), 312.Google Scholar
  24. [29]
    Ryzhik I. M.,Gradstejn I. S., Tablicy integralov, sum, ryadov i proizvedenij. FM Moscow 1963, 1052.Google Scholar
  25. [30]
    Frosch R. F., McCarthy J. S., Rand R. E., Yearian M. R., Phys. Rev.160 (1967), 874.Google Scholar
  26. [31]
    Lipkin H. J., Phys. Rev.109 (1958), 2071.Google Scholar
  27. [32]
    Bethe H. A., Ann. Rev. Nucl. Sci.21 (1971), 93.Google Scholar
  28. [33]
    Delves L., Hennel M. A., Nucl. Phys.A 168 (1971), 347;Google Scholar
  29. [33a]
    Sahai M., et al., Progr. Theor. Phys.51 (1974), 155.Google Scholar
  30. [34]
    Coon S. A., Zabolitzky J. G., Blatt D. W. E., Z. PhysikA 281 (1977), 137.Google Scholar
  31. [35]
    Phillips A. C., Rep. Progr. Phys.40 (1977), 905.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1979

Authors and Affiliations

  • J. Blank
    • 1
  1. 1.Faculty of Mathematics and Physics, PragueNuclear CentrePraha 8Czechoslovakia

Personalised recommendations