Advertisement

Journal of Molecular Evolution

, Volume 9, Issue 1, pp 59–72 | Cite as

Origin of organic compounds on the primitive earth and in meteorites

  • Stanley L. Miller
  • Harold C. Urey
  • J. Oró
Synthesis

Summary

The role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth, in the parent bodies or carbonaceous chondrites, and in the solar nebula are examined. A single source of energy or a single process would not account for all the organic compounds synthesized in the solar system. Electric discharges appear to produce amino acids more efficiently than other sources of energy and the composition of the synthesized amino acids is qualitatively and quantitatively similar to those found in the Murchison meteorite. Ultraviolet light is also likely to have played a major role in prebiotic synthesis. Although the energy in the sun's spectrum that can be absorbed by the major constituents of the primitive atmosphere is not large, reactive trace components such as H2S and formaldehyde absorb at longer wavelengths where greater amounts of energy are available and produce amino acids by reactions involving hot hydrogen atoms. The thermal reaction of CO + H2 + NH3 on Fischer-Tropsch catalysts generates intermediates that lead to amino acids and other organic compounds that have been found in meteorites. However, this synthesis appears to be less efficient than electric discharges and to require a special set of reaction conditions. It should be emphasized that after the reactive organic intermediates are generated by the above processes, the subsequent reactions which produce the more complet biochemical compounds are low temperature homogenous reactions occurring in an aqueous environment.

Key words

Amino acids Carbonaceous chondrites Electric discharges Energy-Fischer-Tropsch Prebiotic synthesis Primitive earth Shock waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvén, H., Arrhenius, G. (1973). Astrophys. Space Sci. 21, 117–176Google Scholar
  2. Anders, E. (1973). In: Molecules in the galactic environment, M.A. Gordon and L.E. Snyder, eds., pp. 429–450. New York: WileyGoogle Scholar
  3. Anders, E., Hayatsu, R., Studier, M.H. (1973). Science 182, 781–790Google Scholar
  4. Anders, E., Hayatsu, R., Studier, M.H. (1974). Astrophys. J. 192, L101-L105Google Scholar
  5. Bar-Nun, A. (1974). In: Cosmochemical evolution and the origins of life, Oró, J. et al., eds., pp. 109–115. Dordrecht: ReidelGoogle Scholar
  6. Bar-Nun, A., Bar-Nun, N., Bauer, S.H., Sagan, C. (1970). Science 168, 470–473Google Scholar
  7. Bar-Nun, A., Bar-Nun, N., Bauer, S.H., Sagan, C. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet and C. Ponnaperuma, eds., pp. 114–122. Amsterdam: North HollandGoogle Scholar
  8. Becker, R.S., Hong, K., Hong, J.H. (1974). J. Mol. Evol. 4, 157–172Google Scholar
  9. Biemann, K., Oró, J., Orgel, L.E., Neir, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R., Biller, J.A. (1976). Science 194, 72–76Google Scholar
  10. Buhl, D. (1971). Nature 234, 331Google Scholar
  11. Bullard, E. (1954). In: The earth as a planet, G.P. Kuiper, ed., pp. 110. Chicago: University of Chicago PressGoogle Scholar
  12. Byers, H.R., ed. (1953). Thunderstorm electricity. Chicago: University of Chicago PressGoogle Scholar
  13. Cameron, A.G.W. (1966). Earth Planet. Sci. Lett. 1, 93–96Google Scholar
  14. Chalmers, J.A. (1957). Atmospheric electricity. London: Pergamon PressGoogle Scholar
  15. Chapman, C.R. (1975). Sci. Am. 232, 24–33Google Scholar
  16. Cronin, J.R., Moore, C.B. (1971). Science 172, 1327–1329Google Scholar
  17. Dayhoff, M.O., Lippincott, E.R., Eck, R.V. (1964). Science 146, 1461–1464Google Scholar
  18. Eck, R.V., Lippincott, E.R., Dayhoff, M.O., Pratt, Y.T. (1966). Science 153, 628–633Google Scholar
  19. Ferris, J.P., Orgel, L.E. (1966). J. Am. Chem. Soc. 88, 1074Google Scholar
  20. Ferris, J.P., Sanchez, R.A., Orgel, L.E. (1968). J. Mol. Biol. 33, 693–704Google Scholar
  21. Folsome, C.E., Lawless, J., Romiez, M., Ponnamperuma, C. (1971). Nature 232, 108Google Scholar
  22. Friedmann, N., Haverland, W.J., Miller, S.L. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet and C. Ponnamperuma, eds., pp. 123–135. Amsterdam: North HollandGoogle Scholar
  23. Friedmann, N., Miller, S.L. (1969). Science 166, 766–767Google Scholar
  24. Friedmann, N., Bovee, H.H., Miller, S.L. (1970). J. Org. Chem. 35, 3230–3232Google Scholar
  25. Gelpi, E., Han, J., Nooner, D.W., Oró, J. (1970). Geochim. Cosmochim. Acta 34, 965–979Google Scholar
  26. Gordon, M.A., Snyder, L.E., eds. (1973). Molecules in the galactic environment. New York: WileyGoogle Scholar
  27. Groth, W., Weyssenhoff, H.V. (1957). Naturwissenschaften 44, 510–511Google Scholar
  28. Groth, W., Weyssenhoff, H.V. (1960). Planet. Space Sci. 2, 79–85Google Scholar
  29. Harada, K., Fox, S.W. (1964). Nature 201, 336–337Google Scholar
  30. Hayatsu, R., Studier, M.H., Anders, E. (1971). Geochim. Cosmochim. Acta 35, 939–951Google Scholar
  31. Hayatsu, R., Studier, M.H., Matsuoka, S., Anders, E. (1972). Geochim. Cosmochim. Acta 36, 555–571Google Scholar
  32. Hayatsu, R., Studier, M.H., Moore, L.P., Anders, E. (1975). Geochim. Cosmochim. Acta 39, 471–488Google Scholar
  33. Hayatsu, R., Studier, M.H., Oda, A., Fuse, K., Anders, E. (1968). Geochim. Cosmochim. Acta 32, 175–190Google Scholar
  34. Herbig, G.H. (1970). Mem. Soc. Roy. Sci. Liege, Tome XIX, 13–26Google Scholar
  35. Hinteregger, H.E. (1963). Space Sci. Rev. 4, 461–497Google Scholar
  36. Hochstim, A.R. (1963). Proc. Nat. Acad. Sci. U.S. 50, 200–208Google Scholar
  37. Hochstim, A.R. (1971). In: Chemical evolution and the origin of life, R. Buvet and C. Ponnamperuma, eds., pp. 96–113. Amsterdam: North HollandGoogle Scholar
  38. Hong, K., Hong, J., Becker, R.S. (1974). Science 184, 984–987Google Scholar
  39. Hubbard, J.S., Hardy, J.P., Horowitz, N.R. (1971). Proc. Nat. Acad. Sci. U.S. 68, 574–578Google Scholar
  40. Hubbard, J.S. Hardy, J.P., Voecks, G.E., Golub, E.E. (1973). J. Mol. Evol. 2, 149–166Google Scholar
  41. Hubbard, J.S., Voecks, G.E., Hobby, G.L., Ferris, J.P., Williams, E.A., Nicodem, D.E. (1975). J. Mol. Evol. 5, 223–241Google Scholar
  42. Kenyon, D.H., Steinmann, G. (1969). Biochemical predestination. New York: McGraw-HillGoogle Scholar
  43. Khare, B.N., Sagan, C. (1971). Nature 232, 577–579Google Scholar
  44. Khare, B.N., Sagan, C. (1973). In: Molecules in the galactic environment, M.A. Gordon, L.E. Snyder, eds., pp. 399–408. New York: WileyGoogle Scholar
  45. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I.R., Moore, C. (1970). Nature 228, 923–926Google Scholar
  46. Kvenvolden, K.A., Lawless, J.G., Ponnamperuma, C. (1971). Proc. Nat. Acad. Sci. U.S. 69, 486–490Google Scholar
  47. Lancet, M.S., Anders, E. (1970). Science 170, 980–982Google Scholar
  48. Lawless, J.G., Boynton, C.G. (1973). Nature 243, 405–407Google Scholar
  49. Lawless, J.G., Kvenvolden, K.A., Peterson, E., Ponnamperuma, C. (1972). Nature 236, 66–67Google Scholar
  50. Lawless, J.G., Zeitman, B., Pereira, W.E., Summons, R.E., Duffield, A.M. (1974). Nature 251, 40–42Google Scholar
  51. Lemmon, R.M. (1970). Chem. Rev. 70, 95–109Google Scholar
  52. Lowe, C.U., Rees, M.W., Markham, R. (1963). Nature 199, 219–222Google Scholar
  53. Miller, S.L. (1953). Science 117, 528–529Google Scholar
  54. Miller, S.L. (1955). J. Am. Chem. Soc. 77, 2351–2361Google Scholar
  55. Miller, S.L. (1957a). Ann. N.Y. Acad. Sci. 69, 260–274Google Scholar
  56. Miller, S.L. (1957b). Biochim. Biophys. Acta 23, 480–489Google Scholar
  57. Miller, S.L. (1959). In: The origin of life, A. I. Oparin, ed., pp. 123–135. Oxford: Pergamon PressGoogle Scholar
  58. Miller, S.L., Orgel, L.E. (1974). The origin of life on the earth. Englewood Cliffs, N.J.: Prentice-HallGoogle Scholar
  59. Miller, S.L., Urey, H.C. (1959). Science 130, 245–251Google Scholar
  60. Nooner, D.W., Gibert, J.M., Gelpi, E., Oró, J. (1976). Geochim. Cosmochim. Acta 40, 915–924Google Scholar
  61. Oparin, A.I. (1938). The origin of life, New York: Macmillan (1953) New York: DoverGoogle Scholar
  62. Opik, E.J. (1966). Advan. Astron. Astrophys. 4, 301–336Google Scholar
  63. Oró, J. (1960). Biochem. Biophys. Res. Comm. 2, 407–412Google Scholar
  64. Oró, J. (1961). Nature 190, 389–390Google Scholar
  65. Oró, J. (1963). Ann. N.Y. Acad. Sci. 108, 464–481Google Scholar
  66. Oró, J. (1965). In: The origin of prebiological systems, S. Fox, ed., pp. 137–171. New York: Academic PressGoogle Scholar
  67. Oró, J. (1968). J. Brit. Interplanet. Soc. 21, 12–25Google Scholar
  68. Oró, J. (1972). Space Life Sci., 3, 507–550Google Scholar
  69. Oró, J. (1976). In: Reflections on biochemistry, A. Kornberg et al., eds., pp. 423–443. Oxford: Pergamon PressGoogle Scholar
  70. Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S., Flory, D.A. (1971). Nature 230, 105–106Google Scholar
  71. Oró, J., Han, J. (1966). Science 153, 1393–1395Google Scholar
  72. Oró, J., Han, J. (1967). J. Gas. Chromatog. 5, 480–485Google Scholar
  73. Oró, J., Kamat, S.S. (1961). Nature 190, 422–443Google Scholar
  74. Oró, J., Kimball, A.P. (1961). Arch. Biochem. Biophys. 94, 217–227Google Scholar
  75. Oró, J., Kimball, A.P. (1962). Arch. Biochem. Biophys. 96, 293–313Google Scholar
  76. Oró, J., Miller, S.L., Ponnaperuma, C., Young, R.S., eds. (1974). Cosmochemical evolution and the origins of life. Dordrecht: ReidelGoogle Scholar
  77. Rank, D.M., Townes, C.H., Welch, W.J. (1971): Science 174, 1083–1090Google Scholar
  78. Ring, D., Wolman, Y., Friedmann, N., Miller, S.L. (1972). Proc. Nat. Acad. Sci. U.S. 69, 765–768Google Scholar
  79. Sagan, C. (1965). Nature 206, 448Google Scholar
  80. Sagan, C. (1973). In: Molecules in the galactic environment, M.A. Gordon, L.E. Snyder, eds., pp. 451–468. New York: WileyGoogle Scholar
  81. Sagan, C., Khare, B.N. (1971). Science 173, 417–420Google Scholar
  82. Sanchez, R.A., Ferris, J., Orgel, L.E. (1966a). Science 153, 72Google Scholar
  83. Sanchez, R.A., Ferris, J., Orgel, L.E. (1966b). Science 154, 784–785Google Scholar
  84. Sanchez, R.A., Ferris, J., Orgel, L.E. (1967). J. Mol. Biol. 30, 223–253Google Scholar
  85. Sanchez, R.A., Ferris, J., Orgel, L.E. (1968). J. Mol. Biol. 38, 121–128Google Scholar
  86. Schonland, B. (1953). Atmospheric electricity, pp. 42, 630. London: MethuenGoogle Scholar
  87. Skewes, H.B. (1966). High temperature initiation of natural amino acid synthesis. Ph. D. Dissertation, Univ. of HoustonGoogle Scholar
  88. Stephen-Sherwood, E., Oró, J. (1973). Space Life Sci. 4, 5–31Google Scholar
  89. Storch, H.H., Golumbic, N., Anderson, R.B. (1951). The Fischer-Tropsch and related syntheses. New York: WileyGoogle Scholar
  90. Studier, M.H., Hayatsu, R., Anders, E. (1968). Geochim. Cosmochim. Acta 32, 151–173Google Scholar
  91. Studier, M.H., Hayatsu, R., Anders, E. (1972). Geochim. Cosmochim. Acta 36, 189–215Google Scholar
  92. Suess, H.E. (1962). J. Geophys. Res. 67, 2029–2034Google Scholar
  93. Tseng, S., Chang, S. (1974). Nature 248, 575–577Google Scholar
  94. Urey, H.C. (1952a). Proc. Nat. Acad. Sci. U.S. 38, 351–363Google Scholar
  95. Urey, H.C. (1952b). The planets, p. 149. New Haven: Yale University PressGoogle Scholar
  96. Urey, H.C. (1972). In: Origin of the solar system, pp. 206–214. Nice: C.N.R.S.Google Scholar
  97. Whipple, F.L. (1966). Science 153, 54–56Google Scholar
  98. Wolman, Y., Haverland, W.J., Miller, S.L. (1972). Proc. Nat. Acad. Sci. U.S. 69, 809–811Google Scholar
  99. Wood, J.A. (1958). Smithsonian Astrophys. Obs. Tech. Rep. 10Google Scholar
  100. Yang, C.C., Oró, J. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet, C. Ponnamperuma, eds., pp. 152–167. Amsterdam: North HollandGoogle Scholar
  101. Yoshino, D., Hayatsu, R., Anders, E. (1971). Geochim. Cosmochim. Acta 35, 927–938Google Scholar
  102. Zeitman, B., Chang, S., Lawless, J.G. (1974). Nature 251, 42–43Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Stanley L. Miller
    • 1
  • Harold C. Urey
    • 1
  • J. Oró
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Departments of Biophysical Sciences and ChemistryUniversity of HoustonUSA

Personalised recommendations