Mathematical systems theory

, Volume 7, Issue 3, pp 265–280 | Cite as

Trajectories and the attainable set of an abstract linear control system

  • Zvi Artstein


Control System Computational Mathematic Linear Control Linear Control System Abstract Linear Control System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Z. Artstein, Set-valued measures,Trans. Amer. Math. Soc. 165 (1972), 103–125.Google Scholar
  2. [2]
    D. Bushaw, Dynamical polysystem and optimization,J. Differential Equations 2 (1963), 351–356.Google Scholar
  3. [3]
    D. Bushaw, Dynamical polysystems: A survey,Proc. U.S.-Japan Seminar on Differential and Functional Equations, Minneapolis, Minn. (1967) Benjamin, New York, 1967, 13–24.Google Scholar
  4. [4]
    H. Halkin, Some further generalizations of a theorem of Lyapounov,Archive Rat. Mech. 17 (1964), 272–277.Google Scholar
  5. [5]
    H. Hermes andJ. P. La Salle,Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.Google Scholar
  6. [6]
    V. Jurdjevic, Abstract control systems: Controllability and observability,SIAM J. Control 8 (1970), 424–439.Google Scholar
  7. [7]
    A. Pelczyński, OnB-spaces containing subspaces isomorphic to the spacec o,Bull. Acad. Polon. Sci. 5 (1957) 797–798.Google Scholar
  8. [8]
    J. J. Uhl, Jr., The range of a vector-valued measure,Proc. Amer. Math. Soc. 23 (1969), 158–163.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • Zvi Artstein
    • 1
  1. 1.Department of MathematicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations