Skip to main content

Reasons for the occurrence of the twenty coded protein amino acids

Summary

Factors involved in the selection of the 20 protein L-α-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. We conclude that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences ofα-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, we would expect that the catalysts would be poly-α-amino acids and that about 75% of the amino acids would be the same as on the earth.

This is a preview of subscription content, access via your institution.

References

  • Abramson FB, Furst CI, McMartin C, Wade R (1969) Biochem J 113:143–156

    Google Scholar 

  • Adcock B, Lawson A, Miles DH (1961) J Chem Soc:5120–5127

  • Andrews PR, Smith GD, Young IG (1973) Biochemistry 12:3492–3498

    Google Scholar 

  • Anfinsen CB, Corley LG (1969) J Biol Chem 244:5149–5152

    Google Scholar 

  • Bada JL, Miller SL (1968) Science 159:423–425

    Google Scholar 

  • Bada JL, Shou M, Man EH, Schroeder RA (1978) Earth Planet Sci Lett 41:67–76

    Google Scholar 

  • Balasubramanian D (1974) Biopolymers 13:407–410

    Google Scholar 

  • Balasubramanian D, Kalita CC, Kovacs J (1973) Biopolymers 12:1089–1098

    Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) Nature 282:189–194

    Google Scholar 

  • Belec J, Jenness R (1962) Biochim Biophys Acta 63:512–514

    Google Scholar 

  • Bonner WA (1972) Origins of molecular chirality. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, p 170

    Google Scholar 

  • Brack A, Spach G (1980) J Mol Evol 15:231–238

    Google Scholar 

  • Bruice TC, Herz JL (1964) J Am Chem Soc 86:4109–4116

    Google Scholar 

  • Bruice TC, Sturtevant JM (1959) J Am Chem Soc 81:2860–2870

    Google Scholar 

  • Burgess AW, Leach SJ (1973) Biopolymers 12:2599–2605

    Google Scholar 

  • Cowie DB, Cohen GN, Bolton ET, Robichon-Szulmajster HDe (1959) Biochim Biophys Acta 34:39–46

    Google Scholar 

  • Crick FHC (1966) J Mol Biol 19:548–555

    Google Scholar 

  • Crick FHC (1967) Nature 213:119

    Google Scholar 

  • Crick FHC (1968) J Mol Biol 38:367–379

    Google Scholar 

  • Crick FHC, Brenner S, Klug A, Pieczenik G (1976) Origins of Life 7:389–397

    Google Scholar 

  • Cronin JR, Moore CB (1971) Science 172:1327–1329

    Google Scholar 

  • Danishefsky S, Hirama M, Fritsch N, Clardy J (1979) J Am Chem Soc 101:7013–7018

    Google Scholar 

  • Deslauriers R, Walter R, Smith CP (1973) FEBS Lett 37:27–32

    Google Scholar 

  • Eigen M, Schuster P (1978) Naturwissenschaften 65:341–369

    Google Scholar 

  • Fahnestock S, Rich A (1971) Science 173:340–343

    Google Scholar 

  • Fickel TE, Gilvarg C (1973) J Org Chem 38:1421–1423

    Google Scholar 

  • Friedmann N, Haverland WJ, Miller SL (1971) Prebiotic synthesis of aromatic and other amino acids. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 123

    Google Scholar 

  • Friedmann N, Miller SL (1969) Science 166:766–767

    Google Scholar 

  • Gatica M, Allende CC, Mora G, Allende JE, Medina J (1966) Biochim Biophys Acta 129:201–203

    Google Scholar 

  • Gilbert JB, Price VE, Greenstein JP (1949) J Biol Chem 180:209–218

    Google Scholar 

  • Glickson JD, Applequist J (1971) J Am Chem Soc 93:3276–3281

    Google Scholar 

  • Goodman M, Fried M (1967) J Am Chem Soc 89:1264–1267

    Google Scholar 

  • Gund P, Veber DF (1979) J Am Chem Soc 101:1885–1887

    Google Scholar 

  • Hamilton PB (1945) J Biol Chem 158:375–395

    Google Scholar 

  • Hay RW, Morris PJ (1970) J Chem Soc (B):1577–1582

  • Hay RW, Morris PJ (1972) J Chem Soc Perkin II:1021–1029

    Google Scholar 

  • Hay RW, Porter LJ (1967) J Chem Soc (B):1261–1264

  • Hay RW, Porter LJ, Morris PJ (1966) Aust J Chem 19:1197–1205

    Google Scholar 

  • Hettinger TP, Craig LC (1970) Biochemistry 9:1224–1232

    Google Scholar 

  • Horowitz NH (1945) Proc Natl Acad Sci USA 31:153–157

    Google Scholar 

  • Isumiya N, Fu SJ, Birnbaum SM, Greenstein JP (1953) J Biol Chem 205:221–230

    Google Scholar 

  • Jacobson SJ, Wilson CG, Rapoport H (1974) J Org Chem 39:1074–1077

    Google Scholar 

  • Jukes TH (1974) Origins of Life 5:331–350

    Google Scholar 

  • Jungck JR (1978) J Mol Evol 11:211–224

    Google Scholar 

  • Khare BN, Sagan C (1971) Nature 232:577–579

    Google Scholar 

  • Kittredge JS, Roberts E (1969) Science 164:37–42

    Google Scholar 

  • Krayevsky AA, Kukhanova MK (1979) The peptidyltransferase center of ribosomes. In: Cohn WE (ed) Progress in nucleic acid research and molecular biology. Vol. 23. Academic Press, New York, p 1

    Google Scholar 

  • Kushwaha DRS, Mathur KB, Balasubramanian D (1980) Biopolymers 19:219–229

    Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Nature 228:923–926

    Google Scholar 

  • Kvenvolden KA Lawless JG, Ponnamperuma C (1971) Proc Natl Acad Sci USA 68:486–490

    Google Scholar 

  • Lagerkvist U (1978) Proc Natl Acad Sci USA 75:1759–1762

    Google Scholar 

  • Lawless JG, Levi N (1979) J Mol Evol 13:281–286

    Google Scholar 

  • Leplawy MT, Jones DS, Kenner GW, Sheppard RC (1960) Tetrahedron 11:39–51

    Google Scholar 

  • Lipson MA, Sondheimer E (1964) J Org Chem 29:2392–2394

    Google Scholar 

  • Macino G, Coruzzi G, Nobrega FG, Li M, Tzagoloff A (1979) Proc Natl Acad Sci USA 76:3784–3785

    Google Scholar 

  • Mark JE, Goodman M (1967) J Am Chem Soc 89:1267–1268

    Google Scholar 

  • Martin RB, Parcell A, Hedrick RI (1964) J Am Chem Soc 86:2406–2413

    Google Scholar 

  • Meister A, Bukenberger MW (1962) Nature 194:557–559

    Google Scholar 

  • Metzler DE, Longenecker JB, Snell EE (1954) J Am Chem Soc 76:639–644

    Google Scholar 

  • Miller SL (1957) Biochim Biophys Acta 23:480–489

    Google Scholar 

  • Miller Sl, Orgel LE (1974) The origins of life on the earth. Prentice-Hall, Englewood Cliffs, New Jersey, p 121

    Google Scholar 

  • Mooz ED (1976) Data on the naturally occuring amino acids. In: Fasman GD (ed) Handbook of biochemistry and molecular biology. proteins, Vol. 1. Chemical Rubber Co. Press, Cleveland, p 111

    Google Scholar 

  • Nagaraj R, Shamala N, Balaram P (1979) J Am Chem Soc 101:16–20

    Google Scholar 

  • Nathans D, Neidle A (1963) Nature 197:1076–1077

    Google Scholar 

  • Norden B (1978) J Mol Evol 11:313–332

    Google Scholar 

  • Old JM, Jones DS (1975) Biochem Soc Trans 3:659–660

    Google Scholar 

  • Peltzer ET (1979) Thesis, University of California, San Diego

  • Peltzer ET, Bada JL (1978) Nature 272:443–444

    Google Scholar 

  • Poduska K, Katrukha GS, Silaev AB, Rudinger J (1965) Collect Czech Chem Commun 30:2410–2433

    Google Scholar 

  • Pospisek J, Blaha K (1976) Syntheses of peptides containing a tert-leucine residue. In: Loffet A (ed) Peptides 1976. Editions Universitaires, Brussels, p 95

    Google Scholar 

  • Reuben J, Polk FE (1980) J Mol Evol 15:103–112

    Google Scholar 

  • Rich A (1971) The possible participation of esters as well as amides in prebiotic polymers. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 180

    Google Scholar 

  • Ring D, Wolman Y, Friedmann N, Miller SL (1972) Proc Natl Acad Sci USA 69:765–768

    Google Scholar 

  • Robinson AB, Scotchler JW, McKerrow JH (1973) J Am Chem Soc 95:8156–8159

    Google Scholar 

  • Rychlik I, Cerna J, Chladek S, Pulkrabek P, Zemlicka J (1970) Eur J Biochem 16:136–142

    Google Scholar 

  • Sagan C, Khare BN (1971) Science 173:417–420

    Google Scholar 

  • Samuel D, Silver BL (1963) J Chem Soc 289–296

  • Sato M, Okawa K, Akabori S (1957) Bull Chem Soc Japan 30:937–938

    Google Scholar 

  • Schlesinger G (1968) Dissertation, University of California, San Diego

    Google Scholar 

  • Schroeder RA, Bada JL (1977) Geochim Cosmochim Acta 41:1087–1095

    Google Scholar 

  • Thanassi JW (1970) Biochemistry 9:525–532

    Google Scholar 

  • Uy R, Wold F (1977) Science 198:890–896

    Google Scholar 

  • Van Trump JE, Miller SL (1972) Science 178:859–860

    Google Scholar 

  • Van Trump JE, White R, Miller SL (1981) in press

  • Vallentyne JR (1964) Geochim Cosmochim Acta 28:157–188

    Google Scholar 

  • Weber AL, Lacey JC Jr (1978) J Mol Evol 11:199–210

    Google Scholar 

  • Wilson H, Cannan RK (1937) J Biol Chem 119:309–331

    Google Scholar 

  • Woese CR (1967) The genetic code: The molecular basis for genetic expression. Harper and Row, New York

    Google Scholar 

  • Wolman Y, Haverland WJ, Miller SL (1972) Proc Natl Acad Sci USA 69:809–811

    Google Scholar 

  • Wong JT (1976) Proc Natl Acad Sci USA 73:2336–2340

    Google Scholar 

  • Wong JT, Bronskill PM (1979) J Mol Evol 13:115–125

    Google Scholar 

  • Zeitman B, Chang S, Lawless JG (1974) Nature 251:42–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, A.L., Miller, S.L. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17, 273–284 (1981). https://doi.org/10.1007/BF01795749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01795749

Key words

  • Amino acids
  • Molecular evolution
  • Genetic Code
  • Protein synthesis
  • Prebiotic synthesis