Czechoslovak Journal of Physics B

, Volume 24, Issue 7, pp 794–809 | Cite as

Landau levels in disordered alloys

  • P. StŘeda


The electronic structure of a substitutionally disordered alloy in a uniform magnetic field has been studied on a simple model of scattering potentials (zero range potentials). The coherent potential and single-site aproximation have been employed.

It turned out that in wide energy region the Dingle temperature, characterizing the decay of the amplitude of de Haas — van Alphen oscillations, is determined by the part of self-energy which does not depend on magnetic field. The field dependent part is important only for a few Landau levels at the bottom of the band. The results can be applied to simple metals and semi-metals.


Magnetic Field Simple Model Haas Energy Region Range Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    de Haas W. J., van Alphen P. M., Proc. Acad. Sci. Amsterdam34, (1931), 1249.Google Scholar
  2. [2]
    Landau L. D., Z. Phys.64 (1930), 629.Google Scholar
  3. [3]
    Templeton I. M., Coleridge P. T., Chollet L. F., Phys. kondens. Materie9 (1969), 21.Google Scholar
  4. [4]
    Lowndes D. H., Miller K. M., Poulsen R. G., Springford M., Proc. Roy. Soc. (London)A 331 (1973), 497.Google Scholar
  5. [5]
    Dingle R. B., Proc. Roy. Soc. (London)A 211 (1952), 517.Google Scholar
  6. [6]
    Mann E., Phys. kondens. Materie12 (1971), 210.Google Scholar
  7. [7]
    Kirkpatrick S., Phys. Rev.B 3 (1971), 2563.Google Scholar
  8. [8]
    Soven P., Phys. Rev.B 5 (1972), 260.Google Scholar
  9. [9]
    Velický B., Kirkpatrick S., Ehrenreich H., Phys. Rev.165 (1968), 747.Google Scholar
  10. [10]
    Zak J., Phys. Rev.134, (1964), A 1602.Google Scholar
  11. [11]
    Zak J., Phys. Rev.134 (1964), A 1607.Google Scholar
  12. [12]
    StŘeda P., Thesis, Institute of Solid State Physics, Praha 1973.Google Scholar
  13. [13]
    Brailsford A. D., Phys. Rev.149 (1966), 456.Google Scholar
  14. [14]
    Bychkov Ju. A., Zh. Eksp. Teor. Phys.39 (1960), 689.Google Scholar
  15. [15]
    Kubo R., Myiake S. J., Hashitsume N., Solid State Physics,17 (1965), 269.Google Scholar
  16. [16]
    Miyake S. J., Thesis, Tokyo University, 1962.Google Scholar
  17. [17]
    Doman B. G. S., J. Phys. Chem. Solids27, (1966), 1233.Google Scholar
  18. [18]
    Skobov V. G., Zh. Ekps. Teor. Phys.38 (1960), 1304.Google Scholar
  19. [19]
    Skobov V. G., Zh. Eksp. Teor. Phys.37 (1959), 1467.Google Scholar
  20. [20]
    Kahn A. H., Phys. Rev.119 (1960), 1189.Google Scholar
  21. [21]
    Abrikosov A. A., Zh. Eksp. Teor. Phys.56 (1969), 1391.Google Scholar
  22. [22]
    Hasegave H., Nakamura M., J. Phys. Soc. Japan26 (1969), 1362.Google Scholar
  23. [23]
    Saitoh M., Fukuyama H., Uemura Y., Shiba H., J. Phys. Soc. Japan27 (1969), 26.Google Scholar
  24. [24]
    Ohta K., Japan J. Appl. Phys.10 (1971), 850.Google Scholar
  25. [25]
    Bastin A., Lewiner C., Betbeder-Matibet O., Nozieres P., J. Phys. Chem. Solids32 (1971), 1811.Google Scholar
  26. [26]
    Tanaka S., Morita T., Progress Theor. Phys.47 (1972), 378.Google Scholar
  27. [27]
    Mott N. F., Massey H. S. W., The Theory of Atomic Collisions, Claredon Press — Oxford 1965.Google Scholar
  28. [28]
    Hartree D. R., Numerical Analysis, Claderon Press — Oxford 1958.Google Scholar
  29. [29]
    Madelung E., Die mathematischen Hilfsmittel des Physikers, Berlin—Göttingen—Heidelberg: Springer 1950.Google Scholar
  30. [30]
    Demkov Ju. N., Drukarev G. F., Zh. Eksp. Teor. Phys.49 (1965), 257.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1974

Authors and Affiliations

  • P. StŘeda
    • 1
  1. 1.Institute of Solid State PhysicsCzechosl. Acad. Sci., PraguePraha 6Czechoslovakia

Personalised recommendations