Czechoslovak Journal of Physics B

, Volume 24, Issue 7, pp 794–809 | Cite as

Landau levels in disordered alloys

  • P. StŘeda


The electronic structure of a substitutionally disordered alloy in a uniform magnetic field has been studied on a simple model of scattering potentials (zero range potentials). The coherent potential and single-site aproximation have been employed.

It turned out that in wide energy region the Dingle temperature, characterizing the decay of the amplitude of de Haas — van Alphen oscillations, is determined by the part of self-energy which does not depend on magnetic field. The field dependent part is important only for a few Landau levels at the bottom of the band. The results can be applied to simple metals and semi-metals.


Magnetic Field Simple Model Haas Energy Region Range Potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    de Haas W. J., van Alphen P. M., Proc. Acad. Sci. Amsterdam34, (1931), 1249.Google Scholar
  2. [2]
    Landau L. D., Z. Phys.64 (1930), 629.Google Scholar
  3. [3]
    Templeton I. M., Coleridge P. T., Chollet L. F., Phys. kondens. Materie9 (1969), 21.Google Scholar
  4. [4]
    Lowndes D. H., Miller K. M., Poulsen R. G., Springford M., Proc. Roy. Soc. (London)A 331 (1973), 497.Google Scholar
  5. [5]
    Dingle R. B., Proc. Roy. Soc. (London)A 211 (1952), 517.Google Scholar
  6. [6]
    Mann E., Phys. kondens. Materie12 (1971), 210.Google Scholar
  7. [7]
    Kirkpatrick S., Phys. Rev.B 3 (1971), 2563.Google Scholar
  8. [8]
    Soven P., Phys. Rev.B 5 (1972), 260.Google Scholar
  9. [9]
    Velický B., Kirkpatrick S., Ehrenreich H., Phys. Rev.165 (1968), 747.Google Scholar
  10. [10]
    Zak J., Phys. Rev.134, (1964), A 1602.Google Scholar
  11. [11]
    Zak J., Phys. Rev.134 (1964), A 1607.Google Scholar
  12. [12]
    StŘeda P., Thesis, Institute of Solid State Physics, Praha 1973.Google Scholar
  13. [13]
    Brailsford A. D., Phys. Rev.149 (1966), 456.Google Scholar
  14. [14]
    Bychkov Ju. A., Zh. Eksp. Teor. Phys.39 (1960), 689.Google Scholar
  15. [15]
    Kubo R., Myiake S. J., Hashitsume N., Solid State Physics,17 (1965), 269.Google Scholar
  16. [16]
    Miyake S. J., Thesis, Tokyo University, 1962.Google Scholar
  17. [17]
    Doman B. G. S., J. Phys. Chem. Solids27, (1966), 1233.Google Scholar
  18. [18]
    Skobov V. G., Zh. Ekps. Teor. Phys.38 (1960), 1304.Google Scholar
  19. [19]
    Skobov V. G., Zh. Eksp. Teor. Phys.37 (1959), 1467.Google Scholar
  20. [20]
    Kahn A. H., Phys. Rev.119 (1960), 1189.Google Scholar
  21. [21]
    Abrikosov A. A., Zh. Eksp. Teor. Phys.56 (1969), 1391.Google Scholar
  22. [22]
    Hasegave H., Nakamura M., J. Phys. Soc. Japan26 (1969), 1362.Google Scholar
  23. [23]
    Saitoh M., Fukuyama H., Uemura Y., Shiba H., J. Phys. Soc. Japan27 (1969), 26.Google Scholar
  24. [24]
    Ohta K., Japan J. Appl. Phys.10 (1971), 850.Google Scholar
  25. [25]
    Bastin A., Lewiner C., Betbeder-Matibet O., Nozieres P., J. Phys. Chem. Solids32 (1971), 1811.Google Scholar
  26. [26]
    Tanaka S., Morita T., Progress Theor. Phys.47 (1972), 378.Google Scholar
  27. [27]
    Mott N. F., Massey H. S. W., The Theory of Atomic Collisions, Claredon Press — Oxford 1965.Google Scholar
  28. [28]
    Hartree D. R., Numerical Analysis, Claderon Press — Oxford 1958.Google Scholar
  29. [29]
    Madelung E., Die mathematischen Hilfsmittel des Physikers, Berlin—Göttingen—Heidelberg: Springer 1950.Google Scholar
  30. [30]
    Demkov Ju. N., Drukarev G. F., Zh. Eksp. Teor. Phys.49 (1965), 257.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1974

Authors and Affiliations

  • P. StŘeda
    • 1
  1. 1.Institute of Solid State PhysicsCzechosl. Acad. Sci., PraguePraha 6Czechoslovakia

Personalised recommendations