Advertisement

Molecular and Cellular Biochemistry

, Volume 2, Issue 2, pp 221–228 | Cite as

Adsorption and reactions of chitinase and lysozyme on chitin

  • J. Skujiņš
  • A. PuĶite
  • A. D. McLaren
General and Review Articles b. general articles

Summary

Isotherms for adsorption of chitinase on chitin and lysozyme on chitin have been determined at two temperatures and rates of hydrolysis of chitin catalysed by these enzymes have been measured at three temperatures and at several enzyme concentrations for each. Ribonuclease, not an enzyme for chitin, and heat-denatured lysozyme and chitinase show reduced or no adsorption to this substrate.

Initial hydrolysis rates of chitin by both enzymes are proportional to total enzyme concentrations in the range of concentrations studied. These kinetics cannot, however, be related to the adsorption isotherms because of the non-equilibrium nature of the isotherms.

Keywords

Chitin Adsorption Isotherm Lysozyme Chitinase Enzyme Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. D. McLaren, Enzymologia 21, 356–364 (1960).Google Scholar
  2. [2]
    A. D. McLaren and L. Packer, Adv. Enzymology 33, 245 (1970).Google Scholar
  3. [3]
    C. Jeuniaux, Chitine et Chitinolyse, Masson et Cie, Paris (1963)Google Scholar
  4. [4]
    H. Nozu, Osaka Daigaku Igaku Zasshi 12, 1531–1532 (1960).Google Scholar
  5. [5]
    L. N. Johnson and D. C. Phillips, Nature 206, 761–763 (1965).Google Scholar
  6. [6]
    J. Skujiņš, A. Puķite and A. D. McLaren, Soil Biol. Biochem. 3, 181–186 (1971).Google Scholar
  7. [7]
    J. Skujiņš, A. Puķite and A. D. McLaren, Enzymologia 39, 353–370 (1970).Google Scholar
  8. [8]
    J. L. Reissig, J. L. Strominger and L. F. Leloir, J. Biol. Chem. 217, 959–966 (1955).Google Scholar
  9. [9]
    A. D. McLaren J. Phys. Chem. 58, 129–137 (1954).Google Scholar
  10. [10]
    S. Östling and P. Virtama, Acta Phys. Scand. 11, 289–293 (1946).Google Scholar
  11. [11]
    A. D. McLaren, Soil Sci. Soc. Amer. Proc. 18, 170–174 (1954).Google Scholar
  12. [12]
    I. A. Cherkasov, N. A. Kravchenko and E. D. Kaverzneva, Dokl. Akad. Nauk SSSR 170, 213–216 (1966).Google Scholar
  13. [13]
    J. P. Hummel and B. S. Anderson, Arch. Biochem. Biophys. 112, 443–447 (1965).Google Scholar
  14. [14]
    K. M. Rudall, Struct. Function Connect. Skeletal Tissue, Proc. St. Andrews, Scot. 1964 pp. 191–196 (1965).Google Scholar
  15. [15]
    K. M. Rudall, Adv. Insect. Physiol. 1, 257–313 (1963).Google Scholar
  16. [16]
    R. H. Hackman and M. Goldberg, Anal Biochem. 8, 397–401 (1964).Google Scholar
  17. [17]
    R. H. Hackman and M. Goldberg, Australian J. Biol. Sci. 18, 935–946 (1965).Google Scholar
  18. [18]
    R. H. Hackman, Australian J. Biol. Sci. 8, 530–536 (1955).Google Scholar
  19. [19]
    K. Hayashi, N. Yamasaki and M. Funatsu, Agr. Biol. Chem. (Tokyo) 28, 517–523 (1964).Google Scholar
  20. [20]
    M. Wenzel, H. P. Lenk and E. Schütte, Z. Physiol. Chem. 327, 13–20 (1961).Google Scholar
  21. [21]
    J. A. Rupley, Biochim. Biophys. Acta 83, 245–255 (1964).Google Scholar
  22. [22]
    R. F. Powning and H. Irzykiewicz, Biochim. Biophys. Acta 124, 218–220 (1966).Google Scholar
  23. [23]
    T. Unestam, Personal communication (1966).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1973

Authors and Affiliations

  • J. Skujiņš
    • 1
  • A. PuĶite
    • 1
  • A. D. McLaren
    • 1
  1. 1.Department of Soils and Plant NutritionUniversity of CaliforniaBerkeleyUSA

Personalised recommendations