Annali di Matematica Pura ed Applicata

, Volume 124, Issue 1, pp 13–38 | Cite as

Existence of optimal controls for systems governed by parabolic partial differential equations with Cauchy boundary conditions

  • D. W. Reid
  • K. L. Teo
Article

Summary

This paper considers the existence of optimal controls for systems governed by a second order parabolic partial differential equation in divergence form with Cauchy conditions. As preliminary results, theorems concerning the convergence of the sequence of weak solutions corresponding to a sequence of admissible controls are proved. Two general forms of criteria are considered. The first one is taken as a function of the weak solution of the system, and the other is taken as a function of the solution of the system and control. Several theorems and corollaries on the existence of optimal controls are then presented.

Keywords

Boundary Condition Differential Equation Partial Differential Equation Weak Solution Divergence Form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. U. Ahmed -K. L. Teo,An Existence Theorem on Optimal Control of Partially Observable Diffusions, SIAM J. Control,12 (1974), pp. 351–355.Google Scholar
  2. [2]
    N. U. Ahmed -K. L. Teo,Necessary Conditions for Optimality of Cauchy Problems for Parabolic Partial Differential Systems, SIAM J. Control,13 (1975), pp. 981–993.Google Scholar
  3. [3]
    D. G. Aronson -J. Serrin,Local Behaviour of Solutions of Quasi-Linear Parabolic Equations, Arch. Rational Mech. Anal.,25 (1967), pp. 81M122.Google Scholar
  4. [4]
    D. G. Aronson,Non Negative Solutions to Linear Parabolic Equations, Ann. Scuola Norm. Sup. Pisa,22 (1968), pp. 607–694.Google Scholar
  5. [5]
    W. H. Fleming,Optimal Control of Partially Observable Diffusions, SIAM J. Control,6 (1968), pp. 194–214.Google Scholar
  6. [6]
    E. Hewitt -O. Stromberg,Real and Abstract Analysis, Springer Verlag, Berlin, Heidelberg, New York, 1965.Google Scholar
  7. [7]
    C. J. Himmelberg -M. Q. Jacobs -F. S. Van Vleck,Measurable Multifunctions, Selectors and Filippov's Implicit Function Lemma, J. Math. Anal. App.,25 (1968), pp. 276–284.Google Scholar
  8. [8]
    E. S.Noussair - S.Nababan - K. L.Teo,On the Existence of Optimal Controls for Quasi-Linear Parabolic Partial Differential Equation, to appear in the Jornal of Optimization Theory and Applications.Google Scholar
  9. [9]
    A. Plis,Remark on Measurable Set-Valued Functions, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. et Phy.,9 (1961), pp. 857–859.Google Scholar
  10. [10]
    F. Riesz -B. Sz-Nagy,Functional Analysis, Frederick Ungar Publishing Company, New York, 1955.Google Scholar
  11. [11]
    K. L. Teo -N. U. Ahmed,On the Optimal Control of a Class of Systems Governed by a Second Order Parabolic Partial Delay-Differentia Equations with First Boundary Conditions. Annali di Matematica P. ed A.,122 (1979), pp. 61–82.Google Scholar
  12. [12]
    T. Zolezzi,Teoremi d'esistenza per problemi di controllo ottimo retti da equazioni ellittiche o paraboliche, Rend. Sem. Mat. Univ. Padova,44 (1970), pp. 155–173.Google Scholar
  13. [13]
    F. Murat,Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Annali di Matematica P. ed A.,112 (1977), pp. 49–68.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1980

Authors and Affiliations

  • D. W. Reid
    • 1
  • K. L. Teo
    • 1
  1. 1.SydneyAustralia

Personalised recommendations