Surgical and Radiologic Anatomy

, Volume 17, Issue 3, pp 249–253 | Cite as

Biomechanics of the hip: forces exerted during walking

  • T Quesnel
  • P M Gueritey
  • G P Gonon
Original Articles


Since the work of Pauwels, the forces exerted on the coxofemoral joint during walking have been studied either in different spatial planes (frontal, sagittal and horizontal) or by three-dimensional spatial analysis. Starting from the findings of our own studies, our aim was to compare the two methods of analysis (two-dimensional and three-dimensional) in order to provide a better understanding of the benefits and limitations of each method. In pursuit of this aim, we studied the pressure forces exerted on the coxofemoral joint, using a geometric plane technique following a method similar to that of Pauwels [20], and with a three-dimensional modelling technique using the finite element method. The material, taken from the published literature, was the same in both our studies. The results are expressed in terms of the size and orientation of the pressure force exerted on the coxofemoral joint during the monopodal weightbearing phase of walking. A comparison of these two methods of analysis clearly demonstrates the simplicity of two-dimensional analysis (which must incorporate as a minimum the frontal plane and the sagittal plane) and the richness of the three-dimensional analysis. The latter method, by appropriate manipulation of the information obtained, provides a starting point for computer simulations performed with the aim of testing a biomechanical or therapeutic hypothesis.

Key words

Forces Hip Walking Modelling Biomechanics 

Biomécanique de la hanche : les sollicitations à la marche


Depuis Pauwels, les sollicitations exercées sur l'articulation coxofémorale au cours de la marche ont été étudiées soit dans les différents plans de l'espace (frontal, sagittal et horizontal), soit par des analyses spatiales tridimensionnelles. A partir d'études personnelles, nous avons voulu comparer ces deux méthodes d'analyse (bidimensionnelle et tridimensionnelle) afin de dégager au mieux les apports et les limites de chacune. Pour cela, nous avons étudié les sollicitations en pression s'exerçant sur l'articulation coxofémorale, d'une part selon une étude géométrique plane dont la méthodologie s'apparente à celle de Pauwels [20], d'autre part selon une modélisation tridimensionnelle par la méthode des éléments finis. Le matériel, emprunté à la littérature, est commun à nos deux études. Les résultats intéressent l'intensité et l'orientation de la force en pression exercée sur l'articulation coxofémorale pendant la phase d'appui monopodal de la marche. La comparaison des deux types d'analyse met en valeur la simplicité de l'analyse bidimensionnelle (qui doit combiner le plan frontal et le plan sagittal au minimum) et la richesse de l'analyse tridimensionnelle qui, par la manipulation des informations obtenues, ouvre sur les simulations informatiques, en vue de tester une hypothèse biomécanique ou thérapeutique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amtmann E, Kummer B (1968) Die Beanspruchung des menschlichen Hüftgelenks. II Größe und Richtung der Hüftgelenks resultierenden in der Frontalebene. Z Anat Entwicklungsgesch 127: 286–314Google Scholar
  2. 2.
    Andriacchi TP, Mikosz RP (1991) Musculoskeletal dynamics, locomotion and clinical applications. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Raven Press, New York, pp 51–92Google Scholar
  3. 3.
    Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26: 969–990Google Scholar
  4. 4.
    Blumentritt S (1990) Die Beziehung zwischen dem Gang des Menschen und dem Hüftgelenk in der Frontalebene. Gegenbaurs Morphol Jahrb 136: 677–693Google Scholar
  5. 5.
    Bombelli R (1976) Osteoarthritis of the hip. Springer-Verlag, Berlin Heidelberg New York, pp 3–8Google Scholar
  6. 6.
    Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19: 589–596Google Scholar
  7. 7.
    Braune W, Fischer O (1889) Über den Schwerpunkt des menschlichen Körpers. Abh Math Phys Cl K Säche Gesellsch Wiss 15: 561–589Google Scholar
  8. 8.
    Braune W, Fischer O (1895) Der Gang des Menschen. I. Versuche am unbelasteten und belasteten Menschen. Abh Math Phys Cl K Säche Gesellsch Wiss 21: 153–322Google Scholar
  9. 9.
    Edgerton VR, Bodine SC, Roy RR (1987) Muscle architecture and performance. Medicine Sport Sci 26: 12–23Google Scholar
  10. 10.
    Fick A (1850) Statische Betrachtung der Muskulatur des Oberschenkels. Z Rat Med 9: 94–106Google Scholar
  11. 11.
    Fischer O (1899) Der Gang des Menschen. II. Die Bewegung des Gesamtschwerpunkt und die äusseren Kräfte. Abh Math Phys Cl K Säche Gesellsch Wiss 25: 1–163Google Scholar
  12. 12.
    Fischer O (1900) Der Gang des Menschen. III. Betrachtungen über die weiteren Ziele der Untersuchung und Überblick über die Bewegungen der unteren Extremitäten. Abh Math Phys Cl K Säche Gesellsch Wiss 26: 87–185Google Scholar
  13. 13.
    Hayes WC (1991) Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Raven Press, New York, pp 93–142Google Scholar
  14. 14.
    Johnston RC, Brand RA, Crowninshield RD (1979) Reconstruction of the hip. J Bone Joint Surg [Am] 61-A: 639–652Google Scholar
  15. 15.
    Kotzar GM, Davy DT, Goldberg VM, Heiple KG, Berilla J, Heiple KG Jr, Brown RH, Burstein AH (1991) Telemeterized in vivo hip joint force data: a report on two patients after total hip sugery. J Orthop Res 9: 621–633Google Scholar
  16. 16.
    Krebs DE, Elbaum L, Riley PO, Hodge WA, Mann RW (1991) Exercise and gait effects on in vivo hip contact pressures. Phys Ther 71: 301–309Google Scholar
  17. 17.
    Maquet P, Vu Anh Tuan (1981) Des forces exercées sur la hanche durant la marche. Acta Orthop Belg 47: 5–11Google Scholar
  18. 18.
    Maquet P (1992) The human gait by Braune and Fischer. In: Cappozzo A, Marchetti M, Tosi V (eds) Biolocomotion: a century of research using moving pictures. Promograph, Roma, pp 115–126Google Scholar
  19. 19.
    Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint — by means of the three dimensional finite element method. J Biomech 16: 427–444Google Scholar
  20. 20.
    Pauwels F (1935) Der Schenkelhalsbruch, ein mechanisches Problem. Beil Z Orthop Chir 63 — Translation by Maquet P (1979) Biomécanique de l'appareil moteur. Springer-Verlag, Berlin Heidelberg New York, pp 1–106Google Scholar
  21. 21.
    Quesnel Th, Gonon GP (1989) Etude des sollicitations et quantification des pressions subies par la hanche en appui monopodal dans le plan sagittal. Bull Ass Anat 73: 29–31Google Scholar
  22. 22.
    Quesnel Th, Sainte-Rose G, Gonon GP (1989) Variation des pressions subies par la hanche durant la phase d'appui monopodal de la marche. Bull Ass Anat 73: 33–36Google Scholar
  23. 23.
    Röhrle H, Scholten R, Sigolotto C, Sollbach W, Kellner H (1984) Joint forces in the human pelvis-leg skeleton during walking. J Biomech 17: 409–424Google Scholar
  24. 24.
    Winter DA (1987) Sagittal plane balance and posture in human walking. IEEE Engineering in medicine and biology magazine, sept, pp 8–11Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • T Quesnel
    • 1
  • P M Gueritey
    • 2
  • G P Gonon
    • 1
  1. 1.Department of BiomechanicsLaboratoire d'anatomie Grange-BlancheLyon Cedex 08France
  2. 2.E.C.A.M, 40, montée St BarthélemyLyon Cedex 05France

Personalised recommendations