Probability Theory and Related Fields

, Volume 80, Issue 3, pp 365–379 | Cite as

Upper classes for the increments of fractional Wiener processes

  • J. Ortega


Let (X(t), t≧0) be a centred Gaussian process with stationary increments andEX2(t)=C0t for someC0>0, 0<α<1, and let 0<a t t be a nondecreasing function oft witha t /t nonincreasing. The asymptotic behaviour of several increment processes constructed fromX anda t is studied in terms of their upper classes.


Stochastic Process Asymptotic Behaviour Probability Theory Mathematical Biology Gaussian Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, S.M.: Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist.35, 502–516 (1964)Google Scholar
  2. 2.
    Berman, S.M.: An asymptotic bound for the distribution of the maximum of a Gaussian process. Ann. Inst. Henri Poincaré21, 47–57 (1985)Google Scholar
  3. 3.
    Berman, S.M.: The maximum of a Gaussian process with nonconstant variance. Ann. Inst. Henri Poincaré21, 383–391 (1985)Google Scholar
  4. 4.
    Csörgö, M., Révész, P.: How big are the increments of the Wiener process?. Ann. Probab.7, 731–743 (1979)Google Scholar
  5. 5.
    Orey, S.: Growth rate of certain Gaussian processes. In: Proc. Sixth Berkeley, Symposium Math. Stat. Prob., vol. 2, pp. 443–451. Berkeley: University of California Press 1971Google Scholar
  6. 6.
    Ortega, J., Wschebor, M.: On the increments of the Wiener process. Z. Wahrscheinlichkeitstheor. Verw. Geb.65, 329–339 (1984)Google Scholar
  7. 7.
    Ortega, J.: On the size of the increments of non-stationary Gaussian processes. Stochastic Proc. Appl.18, 47–56 (1984)Google Scholar
  8. 8.
    Ortega, J.: Comportamiento asintótico de los incrementos de los procesos de Wiener fraccionarios. Actas II Congreso Latinoamericano Prob. Est. Mat., pp. 195–215, Caracas: Equinoccio 1986Google Scholar
  9. 9.
    Plackett, R.L.: A reduction formula for normal multivariate integrals. Biometrika41, 351–360 (1954)Google Scholar
  10. 10.
    Qualls, C., Watanabe, H.: Asymptotic properties of Gaussian processes. Ann. Math. Statist.43, 580–596 (1972)Google Scholar
  11. 11.
    Qualls, C., Watanabe, H.: Asymptotic properties of Gaussian random fields. Trans. Am. Math. Soc.177, 155–171 (1973)Google Scholar
  12. 12.
    Rényi, A.: Probability theory. Amsterdam: North-Holland 1970Google Scholar
  13. 13.
    Révész, P.: On the increments of Wiener and related processes. Ann. Probab.10, 613–627 (1982)Google Scholar
  14. 14.
    Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell System Tech. J.41, 463–501 (1962)Google Scholar
  15. 15.
    Watanabe, H.: An asymptotic property of Gaussian processes. Trans. Am. Math. Soc.148, 233–248 (1970)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. Ortega
    • 1
  1. 1.Depto. de MatemáticasInstituto Venezolano de Investigaciones CientificasCaracasVenezuela

Personalised recommendations