Letters in Mathematical Physics

, Volume 1, Issue 5, pp 367–370 | Cite as

Charge quantization condition withN strings. A new internal quantum number of charge-monopole systems

  • A. O. Barut


Dirac theory of magnetic poles is equivalent to a Maxwell electrodynamics in which besides the point singularities (electric charges), extended singularities (e.g. strings) occur. The nature of singularities determine completely the theory, hence Betti numbers of space must occur as quantum numbers. Magnetic charge is one of the fundamental periods of the 2-formF.


Statistical Physic Quantization Condition Quantum Number Group Theory Electric Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiracP.A.M.,Phys. Rev. 74, 817 (1948).Google Scholar
  2. 2.
    BarutA.O. and BornzinG.,Nucl. Phys. B81, 477 (1974).Google Scholar
  3. 3.
    BalachandranA.P., et al.,Phys. Rev. D13, 359 (1976).Google Scholar
  4. 4.
    Barut, A.O., ‘Covariant Field Theory of the Magnetic Monopole’, Munich preprint 1976.Google Scholar
  5. 5.
    Barut, A.O., ‘Charge Quantization Theorem’, reply to a paper by Usachev,Soviet J. Particles and Nuclei, in press.Google Scholar
  6. 6.
    WuT.T. and YangC.N.,Phys. Rev. D12, 3845 (1975).Google Scholar
  7. 7.
    SchwingerJ.,Science 165, 757 (1961).Google Scholar
  8. 8.
    BarutA.O.,Phys. Rev. D3, 1747 (1971);Proc. Coral Gables Conference on Fundamental Interactions, Gordon & Breach, N.Y., 1970.Google Scholar
  9. 9.
    UsachevYu.D.,Soviet J. Particles and Nucl. 4, 94 (1973).Google Scholar
  10. 10.
    DiracP.A.M.,Proc. Roy. Soc. (London) A133, 60 (1931).Google Scholar
  11. 11.
    Schwinger, J.,Phys. Rev. 144, B 1087 (1966).Google Scholar
  12. 12.
    BarutA.O. and SchneiderH.,J. Math. Phys. 17, 1115 (1976).Google Scholar
  13. 13.,Journ. de Math. p. et appl. 10, 115 (1931);Ens. Math. 35, 213; (1936);Abhandl. aus dem math. Seminar der Hansischen Univ. 12, 313 (1938).Google Scholar
  14. 14.
    TassieJ.L.,Phys. Letters 46B, 397 (1973) has also suggested simple flux lines as models of particles, but the thought these to be different than the Dirac monopoles, but it is equivalent to dyonium, a system of two dyons.Google Scholar
  15. 15.
    Barut, A.O.,Reports on Math. Phys., to be published.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • A. O. Barut
    • 1
  1. 1.Sektion Physik der Universität München8 München 2Germany

Personalised recommendations