Acta Neurochirurgica

, Volume 95, Issue 1–2, pp 19–24 | Cite as

Factors affecting the extension of peritumoural brain oedema. A CT-study

  • H. -J. Reulen
  • S. Graber
  • P. Huber
  • U. Ito


In human brain tumours the extension of peritumoural brain oedema may vary considerably. 37 brain tumours of various pathology and 2 abscesses were examined to identify the factors and mechanisms responsible for the oedema spreading. Peritumoural oedema profiles were determined towards the white matter and ventricle by measuring the CT-numbers of consecutive tissue blocks of 3.0–3.6 mm from the tumour to the normal white matter or the ventricle. It was found that neither the size of the tumour nor the histology has a close relationship to the amount of peritumoural oedema. The distance of oedema spreading rather is determined by the amount of fluid accumulation in the white matter immediately bordering the tumour. This relationship corresponds to a semilogarithmic function and represents the relation between the tumour-adjacent accumulation of extracellular fluid volume and the distance of extracellular fluid movement. The analysis of this relation leads to the suggestion that pressure gradients and bulk flow are involved in the development of human peritumoural oedema.


Brain tumours brain oedema oedema extension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baethmann A (1978) Pathophysiological and pathochemical aspects of cerebral edema. Neurosurg Rev 1: 85–100Google Scholar
  2. 2.
    Blasberg R, Gazendam J, Patlak CS, Fenstermacher JD (1980) Quantitative autoradiographic studies of brain edema and a comparison of multi-isotope autoradiographic techniques. In: Cervos-Navarro J, Ferszt TR (eds) Brain edema. Raven Press, New York, pp 255–270Google Scholar
  3. 3.
    Blasberg R, Patlak C, Shapiro W, Fenstermacher JD (1979) Metastatic brain tumors: local blood flow and capillary permeability. Neurology (Minneap) 29: 547Google Scholar
  4. 4.
    Bruce DA, Ter Weeme C, Kaiser G (1979) The dynamics of small and large molecules in the extracellular space and CSF following local cold injury of the cortex. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, New York Heidelberg, pp 43–49Google Scholar
  5. 5.
    Fujiwara K, Di Chiro G, Klatzo I, Brooks R, Johnston GS, O'Connor CM, Mitchell LG (1980) Serial measurements of CT attenuation and specific gravity in experimental cerebral edema. Radiology 135: 343–348Google Scholar
  6. 6.
    Hossmann KA, Bloeink M, Wilmes F, Wechsler W (1980) Experimental peritumoral edema of the cat brain. In: Cervos-Navarro J, Ferszt R (eds) Brain edema. Raven Press, New York, pp 323–340Google Scholar
  7. 7.
    Hossmann KA, Hürter T, Oschlies U (1983) The effect of dexamethasone on serum protein extravacation and edema development in experimental brain tumors of cat. Acta Neuropathol 60: 223–231Google Scholar
  8. 8.
    Ito U, Reulen HJ, Huber P (1986) Spatial and quantitative distribution of human peritumoural brain edema in CT. Acta Neurochir (Wien) 81: 53–60Google Scholar
  9. 9.
    Ito U, Reulen HJ, Tomita H, Jkeda J, Saito J, Maehara J (1988) Formation and propagation of brain edema fluid around human brain metastases. A CT-study. Acta Neurochir (Wien) 90: 35–41Google Scholar
  10. 10.
    Lanksch WR, Baethmann A, Kauzner E (1981) Computed tomography of brain edema. In: de Vlieger M, de Lange SA, Becks JWF (eds) Brain edema. John Wiley and Sons, New York Chichester Brisban Toronto, pp 67–98Google Scholar
  11. 11.
    Long DM (1970) Capillary ultrastructure and the blood brain barrier in human malignant brain tumors. J Neurosurg 32: 127Google Scholar
  12. 12.
    Lond DM, Harmann JF, French LA (1966) The response of human cerebral edema to glucosteroid administration. Neurology 16: 521Google Scholar
  13. 13.
    Marmarou A, Takagi H, Schulman K (1980) Biomechanics of brain edema and effects of local cerebral blood flow. In: Cervos-Navarro J, Ferszt R (eds) Advances in neurology, vol 28, brain edema. Raven Press, New York, pp 345–458Google Scholar
  14. 14.
    Marmarou A, Tanaka K, Schulmann K (1982) The brain response to infusion edema: Dynamics of fluid resolution. In: Hartmann A, Brock M (eds) Treatment of cerebral edema. Springer, Berlin Heidelberg New York, pp 11–18Google Scholar
  15. 15.
    Oi Sh, Szper J, Wetzel N, Kim KS (1980) Analysis of peritumoral edema and contrast enhancement by computerized axial tomography. No Shinkei Getta 8: 935–940Google Scholar
  16. 16.
    Meinig G, Reulen HJ, Wende S, Schürmann K (1982) Use of dexamethasone and furosemide in brain oedema resulting from brain tumors. In: Hartmann A, Brock M (eds) Treatment of brain edema. Springer, Berlin New York Heidelberg, pp 139–156Google Scholar
  17. 17.
    Reulen HJ, Graham R, Spatz M, Klatzo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46: 24–35Google Scholar
  18. 18.
    Reulen HJ, Tsuyumu M (1981) Pathophysiology of formation and natural resolution of vasogenic brain edema. In: de Vlieger M, de Lange S, Beks JWF (eds) Brain edema. John Wiley, New York, pp 31–48Google Scholar
  19. 19.
    Reulen HJ, Huber P, Ito U (1987) Peritumoral brain-edema. A keynote address. Int Congr Brain Edema, BaltimoreGoogle Scholar
  20. 20.
    Schulmann K, Marmarou A, Weitz S (1975) Gradients of brain interstitial fluid pressure in experimental brain infusion and compression. In: Lundberg N, Pontén U, Brock M (eds) Intracranial pressure, vol 2. Springer, New York Berlin Heidelberg, pp 221–223Google Scholar
  21. 21.
    Steven JM, Ruiz JS, Kendall BE (1983) Observation on peritumoral edema in meningeoma. Part I: Distribution, spread and resolution of vasogenic edema seen on computered tomography. Neuroradiology 25: 71–80Google Scholar
  22. 22.
    Tsuyumu M, Reulen HJ, Inaba Y (1985) Dynamics of fluid movement through brain parenchyma and into the CSF in vasogenic brain edema. In: Inaba Y, Klatzo I, Spatz M (eds) Brain edema, vol 5. Springer, New York Berlin HeidelbergGoogle Scholar
  23. 23.
    Yamaha K, Ushio Y, Hayakawa T, Kato A, Yamada N, Mogami H (1982) Quantitative autoradiographic measurements of blood-brain barrier permeability in the rat glioma model. J Neurosurgery 57: 394–398Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • H. -J. Reulen
    • 1
  • S. Graber
    • 1
  • P. Huber
    • 2
  • U. Ito
    • 3
  1. 1.Department of NeurosurgeryUniversity of BerneBerneSwitzerland
  2. 2.Department of NeuroradiologyUniversity of BerneBerneSwitzerland
  3. 3.Department of NeurosurgeryMusasino Red-Cross HospitalTokyoJapan

Personalised recommendations