Skip to main content

Advertisement

Log in

Inability of flunarizine, lidoflazine or magnesium to counteract delayed hypoperfusion after forebrain ischaemia in the rat

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Local cerebral blood flow (lCBF) was measured autoradiographically 60 min after 15 min of forebrain ischaemia in rats treated with flunarizine (0.1mg/kg b.w.), lidoflazine (1.0mg/kg b.w.) or Mg2+ (600 μmol/kg b.w.) before or at the end of the ischaemic period. Incomplete forebrain ischaemia was produced by a combination of common carotid artery occlusion and bleeding to a mean arterial blood pressure of 50 mmHg. During ischaemia lCBFs in cortical areas were less than 1% of preischaemic values. Neither flunarizine, lidoflazine nor Mg2+ influenced lCBF during ischaemia. Sixty minutes after the start of recirculation lCBFs were decreased to between 40 and 60% of the values found in control animals. None of the instituted treatments improved postischaemic cerebral blood flow. The results do not lend support to the view that calcium plays an essential role in the pathogenesis of delayed postischaemic hypoperfusion in the brain in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Rahman A, Dahlgren N, Ingvar M, Rehncrona A, Siesjö BK (1979) Local versus regional blood flow in the rat at high (hypoxia) and low (phenobarbital anaesthesia) flow rates. Acta Physiol Scand 106: 53–60

    PubMed  Google Scholar 

  2. Allen GS, Gross CJ, Henderson LM, Chou SN (1976) Cerebral arterial spasm. Part 4:In vitro effects of temperature, serotonin analogues, large nonphysiological concentration of serotonin, and extracellular calcium and magnesium on serotonin-induced contractions of the canine basilar artery. J Neurosurg 44: 585–593

    PubMed  Google Scholar 

  3. Altura BM, Altura BT (1983) Pharmacological inhibition of cerebral vasospasm in ischemia, hallucinogen ingestion, and hypomagnesemia: Barbiturates, calcium antagonists, and magnesium. Am J Emerg Med 2: 180–190

    Google Scholar 

  4. Altura BT, Altura BM (1980) Withdrawal of magnesium causes vasospasm while elevated magnesium produces relaxation of tone in cerebral arteries. Neurosci Lett 20: 323–327

    PubMed  Google Scholar 

  5. Carrier Jr O, Hester RK, Jurevics HA, Tenner Jr TE (1976) Influence of magnesium on calcium- and potassium-related responses in vascular smooth muscle. Blood Vessels 13: 321–337

    PubMed  Google Scholar 

  6. Chiang J, Kowada M, Ames III A, Wright RL, Majno G (1968) Cerebral ischemia. III Vascular changes. Am J Pathol 52: 455–476

    PubMed  Google Scholar 

  7. Dean JM, Hoehner PJ, Rogers MC, Traystman RJ (1984) Effect of lidoflazine on cerebral blood flow following twelve minutes total cerebral ischemia. Stroke 15: 531–535

    PubMed  Google Scholar 

  8. Forsman M, Skulberg A, Aarseth HP, Steen PA (1988) Nimodipine given after cardiac arrest in humans; effect on the cerebral circulation. Acta Anaesth Scand, in press

  9. Goldstein S, Zsotér TT (1978) The effect of magnesium on the response of smooth muscle to 5-hydroxytryptamine. Br J Pharmac 62: 507–514

    Google Scholar 

  10. Grögaard B, Gerdin B, Arfors K-E (1986) Forebrain ischemia in the rat. Relation between duration of ischemia, use of adjunctive ganglionic blockade and long-term recovery. Stroke 17: 1010–1015

    PubMed  Google Scholar 

  11. Hoffmeister F, Kaxda S, Krause HP (1979) Influence of nimodipine (Bay e 9736) on the postischemic changes of brain function. Acta Neurol Scand 60: 358–359

    Google Scholar 

  12. Hossmann K-A, Lechtape-Grüter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204: 281–299

    PubMed  Google Scholar 

  13. Kapp J, Mahaley MS Jr, Odom GI (1970) Experimental evaluation of potential spasmolytic drugs. J Neurosurg 32: 468–472

    PubMed  Google Scholar 

  14. Karasawa A, Kumada Y, Yamada K, Shuto K, Nakamizo N (1982) Protective effect of flunarizine against cerebral hypoxiaanoxia in mice and rats. J Pharm Dyn 5: 295–300

    Google Scholar 

  15. Kazda S, Hoffmeister F, Garthoff B, Towart R (1979) Prevention of the postischemic impaired reperfusion of the brain by nimodipine (Bay e 9736). Acta Neurol Scand [Suppl] 72, 60: 302–303

    Google Scholar 

  16. Kågström E, Smith M-L, Siesjö BK (1983a) Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat. Acta Physiol Scand 118: 281–291

    PubMed  Google Scholar 

  17. Kågström E, Smith M-J, Siesjö BK (1983b) Recirculation in the rat brain following incomplete ischemia. J Cereb Blood Flow Metabol 3: 183–192

    Google Scholar 

  18. Levy DE, Van Uitert RL, Pike CL (1979) Delayed postischemic hypoperfusion: a potentially damaging consequence of stroke. Neurology 29: 1245–1252

    PubMed  Google Scholar 

  19. Miller CL, Lampard DG, Alexander K, Brown WA (1980) Local cerebral blood flow following transient cerebral ischemia. I. Onset of impaired reperfusion within the first hour following global ischemia. Stroke 11: 534–541

    PubMed  Google Scholar 

  20. Newberg LA, Steen PA, Milde JH, Michenfelder JD (1984) Failure of flunarizine to improve cerebral blood flow or neurologic recovery in a canine model of complete cerebral ischemia. Stroke 15: 666–671

    PubMed  Google Scholar 

  21. Paljärvi L, Rehncrona S, Söderfeldt B, Olsson Y, Kalimo H (1983) Brain lactic acidosis and ischemic cell damage: Quantitative ultrastructural changes in capillaries of rat cerebral cortex. Acta Neuropathol 60: 232–240

    PubMed  Google Scholar 

  22. Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Am Neurol Ass 11: 499–509

    Google Scholar 

  23. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo(14C)antipyrine. Am J Physiol 1: H 59-H 66

    Google Scholar 

  24. Smith M-L, Kågström E, Rosén I, Siesjö BK (1983) Effect of the calcium antagonist nimodipine on the delayed hypoperfusion following incomplete ischemia in the rat. J Cereb Blood Flow Metabol 3: 543–546

    Google Scholar 

  25. Snyder JV, Nemoto EM, Carroll RG, Safar P (1975) Global ischemia in dogs: Intracranial pressures, brain blood flow and metabolism. Stroke 6: 21–27

    PubMed  Google Scholar 

  26. Steen PA, Gisvold SE, Milde JH, Newberg LA, Scheithauer BW, Lanier WL, Michenfelder JD (1985) Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62: 406–414

    PubMed  Google Scholar 

  27. Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metabol 3: 38–43

    Google Scholar 

  28. Takagi S, Cocito L, Hossmann K-A (1977) Blood recirculation and pharmacological responsiveness of the cerebral vasculature following prolonged ischemia of cat brain. Stroke 8: 707–712

    PubMed  Google Scholar 

  29. Theodorsson-Norheim E (1986) Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comp Meth Prog Biomed 23: 57–62

    Google Scholar 

  30. Turlapaty PDMV, Altura BM (1978) Extracellular magnesium ions control calcium exchange and content of vascular smooth muscle. Eur J Pharm 52: 421–423

    Google Scholar 

  31. White BC, Gadzinski DS, Hoehner PJ, Krome C, Hoehner T, White JD, Trombley JH Jr (1982) Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest. Ann Emerg Med 11: 119–126

    PubMed  Google Scholar 

  32. White BC, Winegar CD, Jackson RE, Joyce KM, Vigor DN, Hoehner TJ, Krause GS, Wilson RF (1983) Cerebral cortical perfusion during and following resuscitation from cardiac arrest in dogs. Am J Emerg Med 2: 128–138

    Google Scholar 

  33. Winegar CP, Henderson O, White BC, Jackson RE, O'Hara T, Krause GS, Vigor DN, Kontry R, Wilson W, Shelby-Lane C (1983) Early amelioration of neurologic deficit by lidoflazine after fifteen minutes of cardiopulmonary arrest in dogs. Ann Emerg Med 13: 471–477

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grøgaard, B., Gerdin, B. & Arfors, K.E. Inability of flunarizine, lidoflazine or magnesium to counteract delayed hypoperfusion after forebrain ischaemia in the rat. Acta neurochir 95, 136–142 (1988). https://doi.org/10.1007/BF01790775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01790775

Keywords

Navigation