Annali di Matematica Pura ed Applicata

, Volume 154, Issue 1, pp 49–81 | Cite as

Torsion free modules

  • John Dauns


Free Module Torsion Free Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si studia un funtore contravariante Ξ dalla categoria di tutti gli anelli associativi con identità (con opportuni omomorfismi) nella categoria dei reticoli Booleani completi (equivalentemente, degli anelli Booleani completi). Per ogni anello R il reticolo Ξ(R) è l'insieme delle classi di equivalenza [A] modulo un'opportuna equivalenza, ove A varia nella classe degli R-moduli destri non singolari.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    G. Birkhoff,Lattice Theory, Amer. Math. Soc. Colloquium Pub., XXV, Providence, R.I. (1967).Google Scholar
  2. [BL]
    B. Brainerd -J. Lambek,On the ring of quotients of a Boolean ring, Can. Math. Bull.,2 (1959), pp. 25–29.Google Scholar
  3. [D1]
    J. Dauns,Uniform modules and complements, Houston J. Math.,6 (1980), pp. 31–40.Google Scholar
  4. [D2]
    J. Dauns,Sums of uniform modules, in:Advances in Non-Commutative Ring Theory (P. J. Fleury, Ed.), pp. 68–87, Lecture Notes in Math., No.951, Springer-Verlag, Berlin-Heidelberg-New York (1981).Google Scholar
  5. [D3]
    J. Dauns,Uniform dimensions and subdirect products, Pac. J. Math.,126 (1985), pp. 1–19.Google Scholar
  6. [DF]
    J. Dauns -L. Fuchs,Infinite Goldie dimensions, J. Alg.,115, (1988), pp. 297–302.Google Scholar
  7. [GHKLMS]
    G. Gierz -K. H. Hofmann -K. Keimel -J. D. Lawson -M. Mislove -D. S. Scott,A Compendium of Continuous Lattices, Springer-Verlag, Berlin-Heidelberg-New York (1980).Google Scholar
  8. [GJ]
    J. Gillman -M. Jerison,Rings of Continuous Functions, D. Van Nostrand Co., Princeton, N.J. (1960).Google Scholar
  9. [G1]
    K. R.Goodearl,Singular torsion and the splitting properties, Amer. Math. Soc. Memoir No.124, Providence, R.I. (1972).Google Scholar
  10. [G2]
    K. R. Goodearl,Ring Theory, Marcel Dekker, New York (1976).Google Scholar
  11. [G3]
    K. R. Goodearl,Von Neumann Regular Rings, Pitman, London (1979).Google Scholar
  12. [GB]
    K. R.Goodearl - A. K.Boyle,Dimension theory for nonsingular injective modules, Amer. Math. Soc. Memoir No.116, Providence, R.I. (1976).Google Scholar
  13. [GR]
    R.Gordon - J. C.Robson,Krull dimensions, Amer. Math. Soc. Memoir No.133, Providence, R.I. (1973).Google Scholar
  14. [Gr]
    G. Grätzer,General Lattice Theory, Academic Press, New York (1978).Google Scholar
  15. [H]
    P. Halmos,Lectures on Boolean Algebras, Math. Studies No.1, D. Van Nostrand Co., Princeton, N.J. (1963).Google Scholar
  16. [Ha]
    R. Hart,Simple rings with uniform right ideals, J. London Math. Soc,42 (1967), pp. 614–617.Google Scholar
  17. [J]
    N. Jacobson,Basic Algebra I, 2nd ed., W. H. Freeman and Co., San Francisco, (CA) (1985).Google Scholar
  18. [Je]
    T. Jech,Set Theory, Academic Press, New York (1978).Google Scholar
  19. [K]
    K. Koh,Quasi-Simple Modules, Lecture Notes in Math., No.246, Springer-Verlag, Berlin-Heidelberg-New York (1972).Google Scholar
  20. [M]
    S. Maclane,Categories for the Working Mathematician, Springer-Verlag, Berlin-Heidelberg-New York (1971).Google Scholar
  21. [P]
    R. S. Pierce,A note on complete Boolean algebras, Proc. Amer. Math. Soc,9 (1958), pp. 892–896.Google Scholar
  22. [S]
    R. Sikorski,Boolean Algebras, end ed., Springer-Verlag, Berlin-Heidelberg-New York, (1964).Google Scholar
  23. [Su]
    M. Suzuki,Structure of a Group and the Structure of its Lattice of Subgroups, Springer-Verlag, Berlin-Heidelberg-New York (1956).Google Scholar
  24. [T]
    C. T. Tsai,Injective Modules, Queen's Papers on Pure and Applied Math. No. 6, Queen's Univ., Kingston, Ontario (1965).Google Scholar
  25. [U]
    Y. Utumi,On continuous rings and self injective rings, Trans. Amer. Math. Soc.,118 (1965), pp. 158–173.Google Scholar
  26. [W]
    R. B. Warfield,Decompositions of injective modules, Pao. J. Math.,31 (1969), pp. 236–276.Google Scholar
  27. [Z]
    J. Zelmanowitz,Injective hulls of torsion-free modules, Canad. J. Math.,23 (1971), pp. 1094–1101.Google Scholar
  28. [Z-H,Z]
    B.Zimmermann-Huisgen - W.Zimmerman,Classes of modules with the exchange property, to appear.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1989

Authors and Affiliations

  • John Dauns
    • 1
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations