Skip to main content
Log in

Deoxynucleoside-sensitive mutants ofSalmonella typhimurium

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Thymineless mutants ofSalmonella typhimurium which are able to grow with low added concentrations of thymine (20 μM) fall into two classes on the basis of growth on deoxyribose as sole carbon source. Those which can grow are deoxyribomutase negative and those which cannot are deoxyriboaldolase negative. The former class are inhibited by deoxynucleosides and this provides a method for discriminating between different classes oftlr mutants ofEscherichia coli K12, which cannot utilize deoxyribose as a carbon source. It is suggested that the sensitivity of deoxyriboaldolase negative strains is due to the accumulation of deoxyribose-5-phosphate. The data also indicate that deoxyribose-5-phosphate is the inducer of thymidine phosphorylase. It seems that one or both of the deoxyribose phosphates is the toxic compound, and that reversal of inhibition by ribonucleosides is due to inhibition of the enzymes catalysing their formation from deoxynucleosides. We propose that the symbolsdrm anddra be used to denote the structural genes for deoxyribomutase and deoxyriboaldolase respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alikhanian, S. E. I., T. S.Iljina, E. S.Kalioeva, S. V.Kameneva, and U. U.Sukhodolec: A genetic study of thymineles mutants ofE. coli K12. Genet. Res.8, 83 (1966).

    PubMed  Google Scholar 

  • Anderson, H.: Growth requirements of virus resistant mutants of a bacterial strain. Proc. nat. Acad. Sci. (Wash.)32, 120 (1946).

    Google Scholar 

  • Barkulis, I. L.: Growth inhibition ofEberthalla typhosa by certain carbohydrates and its release by mutation. J. Bact.58, 103 (1949).

    Google Scholar 

  • Barth, P. T., I. Beacham, S. I. Ahmad, andR. H. Pritchard: Properties of bacterial mutants defective in the catabolism of deoxynucleosides. Biochem. J.106, 36P (1968a).

  • Barth, P. T., I. Beacham, S. I. Ahmad, andR. H. Pritchard: The inducer of the deoxynucleoside phosphorylases and deoxyriboaldolase inEscherichia coli. Biochim. biophys. Acta (Amst.) in press (1968b).

  • Böck, A., and F. C.Neidhart: Properties of a mutant ofEscherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase. J. Bact.92, 470 (1966).

    Google Scholar 

  • Breitman, T. R., and R. M.Bradford: The induction of thymidine phosphorylase and excretion of deoxyribose during thymine starvation. Biochim. biophys. Res. Commun.17, 786 (1964).

    Google Scholar 

  • ——: The absence of deoxyriboaldolase activity in a thymineless mutant ofEscherichia coli strain 15: A possible explanation for the low thymine requirement of some bacterial strains. Biochim. biophys. Acta (Amst.)138, 217 (1967).

    Google Scholar 

  • Budman, D. R., and A. B.Pardee: Thymidine and thymine incorporation into nucleic acid: Inhibition and repression by uridine of thymidine phosphorylase of Éscherichia coli. J. Bact.94, 1546 (1967).

    PubMed  Google Scholar 

  • Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of desoxyribonucleic acid. Biochem. J.62, 315 (1956).

    PubMed  Google Scholar 

  • Cozzarelli, N. R., J. P.Koch, and E. C. C.Lin: Growth stasis by accumulated L-γ-glycerophosphate inEscherichia coli. J. Bact.90, 1325 (1965).

    PubMed  Google Scholar 

  • Englesberg, E., R. L.Anderson, R.Weisberg, N.Lee, P.Hoffee, A.Huttenhauer, and H.Boyer: L-arabinose-sensitive L-ribolose 5-phosphate 4-epimerase-deficient mutants ofEscherichia coli. J. Bact.84, 137 (1962).

    PubMed  Google Scholar 

  • —, and L. S.Baron: Mutation of L-rhamnulose resistance and transduction to L-rhamnose utilisation inSalmonella typhosa. J. Bact.78, 675 (1959).

    PubMed  Google Scholar 

  • Flaks, J. G.: 5-phosphoribose pyrophosphokinase. Meth. in Enzymology6, 158 (1963).

    Google Scholar 

  • Freidkin, M., and H. M.Kalckar: Deoxyribose-1-phosphate. I. the phosphorylysis and resynthesis of purine deoxyribonucleoside. J. biol. Chem.184, 437 (1950).

    PubMed  Google Scholar 

  • Gardner, R., and A.Kornberg: Biochemical studies of bacterial sporulation and germination. V. Purine nucleoside phosphoylase of vegetative cells and spores ofBacillus cereus. J. biol. Chem.242, 2383 (1967).

    PubMed  Google Scholar 

  • Harrison, A. P., Jr.: Thymine incorporation and metabolism by various classes of thymineless bacteria. J. gen. Microbiol.41, 321 (1965).

    PubMed  Google Scholar 

  • Hotchkiss, R. D.: The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J. biol. Chem.175, 315 (1948).

    Google Scholar 

  • Kammen, H. O.: Thymine metabolism inEscherichia coli. I. Factors involved in utilization of exogenous thymine. Biochim. biophys. Acta (Amst.)134, 301 (1967).

    Google Scholar 

  • Katz, J., and R.Rognstad: The labelling of pentose phosphate from glucose-C14 and estimation of the rates of transaldolase, transketolase, the contributions of the pentose cycle and ribose phosphate synthesis. Biochemistry6, 2227 (1967).

    PubMed  Google Scholar 

  • Kjeldgaard, N. O.: The kinetics of ribonucleic acid and protein formation inSalmonella typhimurium during the transition between different states of balanced growth. Biochim. biophys. Acta (Amst.)49, 64 (1961).

    Google Scholar 

  • Kurahashi, K., and A. J.Wahba: Interference with growth of certainEscherichia coli mutants by galactose. Biochim. biophys. Acta (Amst.)30, 298 (1958).

    Google Scholar 

  • Larsson, A., and P.Reichard: Enzymatic synthesis of deoxyribonucleotides X. Reduction of purine ribonucleotides; allosteric behaviour and substrate specificity of the enzyme system fromEscherichia coli B. J. biol. Chem.241, 2540 (1966).

    PubMed  Google Scholar 

  • Lowry, O. H., N. J.Roseborough, A. L.Farr, and R. J.Randall: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265 (1951).

    PubMed  Google Scholar 

  • Munch-Petersen, and M.Vilstrup: Thymidine induced enzymes in mutants ofEscherichia coli. Proc. VII Congr. Biochem. Tokyo4, 825 (1967).

    Google Scholar 

  • Neu, H. C., and L. A.Heppel: The release of enzymes fromEscherichia coli by osmotic shock and during the formation of spheroplasts. J. biol. Chem.240, 3685 (1965).

    PubMed  Google Scholar 

  • Okada, T.: Mutational site of the gene controlling quantitative thymine requirement inE. coli K 12. Genetics54, 1329 (1966).

    Google Scholar 

  • Rachmeler, M., J.Gerhart, and J.Rosner: Limited thymidine uptake inEscherichia coli due to an inducible thymidine phosphorylase. Biochim. biophys. Acta (Amst.)47, 222 (1961).

    Google Scholar 

  • Roodyn, D. B., and H. G.Mandel: A simple membrane fraction method for determining the distribution of radioactivity in chemical fractions ofBacillus cereus. Biochim. biophys. Acta (Amst.)41, 80 (1960).

    Google Scholar 

  • Wang, C. H., I.Stern, C. M.Gilmour, S.Klungsoyr, D. J.Reed, J. J.Bialy, B. E.Christensen, a and U. H.Cheldelin: Comparative study of glucose catabolism by the radiorespirometric method. J. Bact.76, 207 (1958).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byP. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beacham, I.R., Eisenstark, A., Barth, P.T. et al. Deoxynucleoside-sensitive mutants ofSalmonella typhimurium . Molec. Gen. Genet. 102, 112–127 (1968). https://doi.org/10.1007/BF01789138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01789138

Keywords

Navigation