Graphs and Combinatorics

, Volume 5, Issue 1, pp 63–81 | Cite as

Characterization of {(q + 1) + 2, 1;t, q}-min · hypers and {2(q + 1) + 2, 2; 2,q}-min · hypers in a Finite projective geometry

  • Noboru Hamada
Article

Abstract

In this paper, we shall characterize all {(q + 1) + 2, 1;t, q}-min · hypers and all {2(q + 1) + 2, 2; 2,q}-min · hypers for any integert ≥ 2 and any prime powerq ≥ 3. In the next paper [8], we shall characterize all {2(q + 1) + 2, 2;t, q}-min · hypers for any integert ≥ 3 and any prime powerq ≥ 5 using the results in this paper.

Keywords

Projective Geometry Finite Projective Geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bose, R.C.: On some connections between the design of experiments and information theory. Bull. Int. Stat. Inst.38, 257–271 (1961)Google Scholar
  2. 2.
    Carmichael, R.D.: Introduction to the Theory of Groups of Finite Order. New York: Dover Publications 1956Google Scholar
  3. 3.
    Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Dev.4, 532–542 (1960)Google Scholar
  4. 4.
    Hamada, N.: Characterization resp. nonexistence of certainq-ary linear codes attaining the Griesmer bound. Bull. Osaka Women's Univ.22, 1–47 (1985)Google Scholar
  5. 5.
    Hamada, N.: Characterization of {2(q + 1), 2;t, q}-min · hypers and {2(q + 1) + 1, 2;t, q}-min · hypers in a finite projective geometry. Bull. Osaka Women's Univ.26 (to appear)Google Scholar
  6. 6.
    Hamada, N.: Characterization of min · hypers in a finite projective geometry and its applications to error-correcting codes. Bull. Osaka Women's Univ.24, 1–24 (1987)Google Scholar
  7. 7.
    Hamada, N.: Characterization of {12, 2; 2, 4}-min · hypers in a finite projective geometry PG(2, 4). Bull. Osaka Women's Univ.24, 25–31 (1987)Google Scholar
  8. 8.
    Hamada, N., Deza, M.: Characterization of {2(q + 1) + 2, 2;t, q}-min · hypers in PG(t, q) (t ≥ 3, q ≥ 5) and its applications to error-correcting codes. Discrete Math.71, 219–231Google Scholar
  9. 9.
    Hamada, N., Tamari, F.: On a geometrical method of construction of maximalt-linearly independent sets. J. Comb. Theory (A)25, 14–28 (1978)Google Scholar
  10. 10.
    Hamada, N., Tamari, F.: Construction of optimal codes and optimal fractional factorial designs using linear programming. Ann. Discrete Math.6, 175–188 (1980)Google Scholar
  11. 11.
    Hamada, N., Tamari, F.: Construction of optimal linear codes using flats and spreads in a finite projective geometry. Europ. J. Comb.3, 129–141 (1982)Google Scholar
  12. 12.
    Helleseth, T.: A characterization of codes meeting the Griesmer bound. Inf. Control50, 128–159 (1981)Google Scholar
  13. 13.
    MacWilliams, F. J., Sloane, N.J.A.: The theory of error-correcting codes. Amsterdam: North-Holland Mathematical Library 16 (1977)Google Scholar
  14. 14.
    Solomon, G., Stiffler, J.J.: Algebraically puncture cyclic codes. Inf. Control8, 170–179 (1965)Google Scholar
  15. 15.
    Tamari, F.: A note on the construction of optimal linear codes. J. Stat. Plann. Inference5, 405–411 (1981)Google Scholar
  16. 16.
    Tamari, F.: On an {f, m; t, s}-max · hyper and a {k, m; t, s}-min · hyper in a finite projective geometry PG(t, s). Bull. Fukuoka Univ. Educ.31 (III, 35–43 (1981)Google Scholar
  17. 17.
    Tamari, F.: On linear codes which attain the Solomon-Stiffler bound. Discrete Math.49, 179–191 (1984)Google Scholar
  18. 18.
    Tilborg, H.C.A. van: On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound. Inf. Control44, 16–35 (1980)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Noboru Hamada
    • 1
  1. 1.Department of MathematicsOsaka Women's UniversitySakai, OsakaJapan

Personalised recommendations