Mathematical systems theory

, Volume 15, Issue 1, pp 145–168 | Cite as

Hamiltonian dynamics with external forces and observations

  • A. J. van der Schaft
Article

Abstract

In this paper a definition of a (nonlinear) Hamiltonian system with inputs and outputs is given, which generalizes both the definition of a linear Hamiltonian system with inputs and outputs and the differential geometric definition of a Hamiltonian vectorfield. Specialized to the case of Lagrangian systems this definition generates the Euler-Lagrange equations with external forces. Further interconnections of Hamiltonian systems are treated and the close relationship with network theory is showed. Finally the newly developed theory is applied to the study of symmetries and to a realization theory for Hamiltonian systems. It will be argued that this way of describing Hamiltonian systems can be extended to a broader class of physical systems.

Keywords

Computational Mathematic External Force Hamiltonian System Physical System Broad Class 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Duhem, L'evolution de la mécanique, Hermann, 1905Google Scholar
  2. 2.
    G. Hamel, Theoretische Mechanik, Springer Verlag, 1949Google Scholar
  3. 3.
    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag (translation of the 1974 Russian edition), 1978Google Scholar
  4. 4.
    R. Abraham and J. E. Marsden, Foundation of Mechanics, Benjamin/Cummings, 1978Google Scholar
  5. 5.
    R. W. Brockett,Control Theory and Analytical Mechanics, Geometric Control Theory, Lie Groups: History, Frontiers, and Applications, (Editors: C. Martin and R. Hermann), vol. 3 Math. Sci. Press, 1–46 (1977)Google Scholar
  6. 6.
    F. Takens,Variational and Conservative Systems, Rapport ZW-7603., Math. Inst. Groningen, 1976Google Scholar
  7. 7.
    J. C. Willems,System theoretic models for the analysis of physical systems, Ricerche di Automatica (Special Issue onSystems Theory and Physics) vol. 10, no. 2, 1979Google Scholar
  8. 8.
    J. C. Willems and J. H. van Schuppen,Stochastic Systems and the Problem of State Space Realization, NATO Adv. Study Institute and A.M.S. Summer Seminar in Appl. Math. on “Algebraic and Geometric Methods in Linear Systems Theory,” Harvard Univ. Press, Cambridge Mass., 1979Google Scholar
  9. 9.
    W. M. Tulczyjew,Hamiltonian systems, Lagrangian systems and the Legendre transformation, Symposia Mathematica, vol. 14, 247–258, 1974Google Scholar
  10. 10.
    R. Herman,The Geometry of Non-linear Differential Equations, Bäcklund Transformations, and Solitons, Part A, Interdisciplinary Mathematics, Math. Sci. Press, vol. 12, 1976Google Scholar
  11. 11.
    R. Hermann and A. J. Krener,Nonlinear Controllability and Observability, IEEE Trans. Automatic Control, vol. AC-22, 5, 728–740, 1977Google Scholar
  12. 12.
    H. H. E. Leipholz,Six lectures on Variational Principles in Structural Engineering, University of Waterloo Press, 1978.Google Scholar
  13. 13.
    R. K. Brayton,Nonlinear Reciprocal Networks, Electrical Network Analysis, SIAM-AMS Proceedings, vol. 3, 1–16, 1978Google Scholar
  14. 14.
    R. Hermann,Geometric Structure of Systems-Control Theory and Physics, Part A, Interdisciplinary Mathematics, Math. Sci. Press, vol. 9, 1974Google Scholar
  15. 15.
    A. Weinstein, Lecture 3 of Lectures on Symplectic manifolds, Expository lectures from the CBMS Regional Conference, 1976Google Scholar
  16. 16.
    R. W. Brockett, Finite Dimensional Linear Systems, J. Wiley, New York, 1970Google Scholar
  17. 17.
    R. W. Brockett and A. Rahimi,Lie algebras and Linear Differential Equations, Ordinary Differential Equations (Ed. L. Weiss), Acad. Press, 1972Google Scholar
  18. 18.
    R. Hermann.Algebra-Geometric and Lie-Theoretic Techniques in Systems Theory, Part A, Chapter VI, Interdisciplinary Mathematics, Math. Sci. Press vol. 3, 1977Google Scholar
  19. 19.
    J. Basto Concalves,Equivalence of gradient systems, Control Theory Centre Report No. 84, University of WarwickGoogle Scholar
  20. 20.
    J. C. Willems,Consequences of a Dissipation Inequality in the Theory of Dynamical Systems, Physical Structure in Systems Theory (Eds.: J. J. van Dixhoorn and F. J. Evans). Academic Press, 193–218, 1974Google Scholar
  21. 21.
    A. J. van der Schaft,Observability and controllability for smooth nonlinear systems, to appear inSiam J. Control and Optimization Google Scholar
  22. 22.
    A. J. van der Schaft.Symmetries and conversation laws for Hamiltonian systems with inputs and outputs: a generalization of Noether's theorem.Systems & Control Letters, vol. 1, 108–115, 1981.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1982

Authors and Affiliations

  • A. J. van der Schaft
    • 1
  1. 1.Mathematics InstituteGroningenThe Netherlands

Personalised recommendations