Weak* derived sets of sets of linear functionals

  • B. V. Godun


For a Banach space X the w*-sequential closure operator in the adjoint space is, in general, not the topological closure operator. That is, it may happen that the w*-sequential closure of a subspace T of X* is not w*-sequentially closed. The possible length of the chain of repeated w*-sequential closures of a subspace of X* in dependence on the dimension of X**/X is investigated.


Banach Space Closure Operator Linear Functional Sequential Closure Topological Closure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. S. Banach, A Course of Functional Analysis [Ukrainian translation], Radyanska Shkola, Kiev (1948).Google Scholar
  2. 2.
    M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin-New York (1973).Google Scholar
  3. 3.
    P. Civin and B. Yood, “Quasireflexive spaces,” Proc. Am. Math. Soc.,8, 906–911 (1957).Google Scholar
  4. 4.
    W. J. Davis and W. B. Johnson, “Basic sequences and norming subspaces in nonquasireflexive Banach spaces,” Israel J. Math.,14, 353–367 (1973).Google Scholar
  5. 5.
    W. J. Davis and J. Lindenstrauss, “On total nonnorming subspaces,” Proc. Am. Math. Soc.,31, No. 1, 109–111 (1972).Google Scholar
  6. 6.
    A. M. Plichko, “Criteria for the quasireflexivity of a Banach space,” Dokl. Akad. Nauk Ukr. SSR,5, 406–408 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • B. V. Godun
    • 1
  1. 1.Kharkov Public Works Engineering InstituteUSSR

Personalised recommendations