Advertisement

Klinische Wochenschrift

, Volume 65, Issue 1, pp 17–21 | Cite as

Ca2+-Mg2+-ATPase activity of human red blood cells in healthy and diabetic volunteers

  • W. Schaefer
  • J. Prießen
  • R. Mannhold
  • A. F. Gries
Originalien

Summary

The present investigation was dedicated to support biochemical interpretations of well-known long-term microvascular complications in diabetes. Provided the hypothetical correlation between erythrocyte membrane rigidity and increased intracellular calcium content holds true, a reduced Ca2+-Mg2+-ATPase activity in diabetic subjects could represent the underlying biochemical mechanism. Thus, we have compared basal and calmodulin-activated ATPase activity in healthy and diabetic volunteers. We could demonstrate a significant reduction of basal and stimulated enzyme activity in diabetic subjects. Furthermore, partial purification of calmodulin from erythrocytes of diabetic patients and healthy subjects yielded experimental evidence that reduced enzyme activity in diabetic volunteers is due to an altered basal activity as well as to a reduced stimulation by calmodulin.

Key words

Diabetes Ca2+-Mg2+-ATPase Calmodulin Microvascular disorders Erythrocyte deformability 

Abbreviations

ATP

Adenosine 5′-triphosphate

ATPase

Adenosine 5′-triphosphatase

DEAE

Diethylaminoethyl

EDTA

Ethylenediamine tetraacetate

EGTA

Ethyleneglycol-bis-(β-aminoethyl ether)N,N′-tetraacetic acid

Pi

Inorganic phosphate

Tris

Tris(hydroxymethyl)aminomethane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brownlee M, Cerami A (1981) The biochemistry of the complications of diabetes mellitus. Ann Rev Biochem 50:385–432PubMedGoogle Scholar
  2. 2.
    Bunn HF (1981) Nonenzymatic glycosylation of diabetes: relevance to diabetes. Am J Med 70:325–330Google Scholar
  3. 3.
    Crandall ED, Critz AM, Osher AS, Keljo DJ, Forster RE (1978) Influence of pH on elasitc deformability of the human erythrocyte membrane. Am J Physiol 235:C269-C278PubMedGoogle Scholar
  4. 4.
    Dedman JR, Kaetzel MA (1983) Calmodulin purification and fluorescent labeling. Methods enzymol 102:1–9Google Scholar
  5. 5.
    Dreher KL, Eaton JW, Kuettner JF, Breslawec KP, Blackshear PL, White JG (1978) Retention of water and potassium by erythrocytes prevents calcium induced membrane rigidity. Am J Pathol 92:215–224PubMedGoogle Scholar
  6. 6.
    Dreher KL, Eaton JW, Breslawec KP, Berger E, Blackhear PL, White JG (1980) Calcium-induced erythrocyte rigidity. Am J Pathol 101:543–556PubMedGoogle Scholar
  7. 7.
    Dunn MJ, Maddy AH (1976) Techniques for the analysis of membrane proteins. In: Maddy AH (ed) Biochemical analysis of membranes, Wiley, New York, p 197Google Scholar
  8. 8.
    Gietzen G, Mansard A, Bader H (1980) Inhibition of human erythrocyte Ca++-transport ATPase by phenothiazines and butyrophenones. Biochem Biophys Res Commun 94:674–681PubMedGoogle Scholar
  9. 9.
    Gietzen K, Adamczyk-Engelmann A, Wüthrich A, Konstantinova A, Bader H (1983) Compound 48/80 is a selective and powerful inhibitor of calmodulin-regulated functions. Biochim Biophys Acta 736:109–118PubMedGoogle Scholar
  10. 10.
    Isogai Y, Mochzuki K, Maeda T (1981) Red cell filterability in diabetes. Scand J Clin Lab Invest 41 [Supl 156]:171–173PubMedGoogle Scholar
  11. 11.
    Jamieson GA, Vanaman TC (1979) Calcium-dependent affinity chromatography of calmodulin on an immobilized phenothiazine. Biochem Biophys Res Commun 90:1048–1056PubMedGoogle Scholar
  12. 12.
    Lin TJ, Morales MF (1977) Application of a one-step procedure for measuring inorganic phosphate in the presence of protein. Anal Biochem 77:10–17PubMedGoogle Scholar
  13. 13.
    Means GE, Chang MK (1982) Nonenzymatic glycosylation of proteins. Structure and function changes. Diabetes 31 [Suppl 3]:1–4Google Scholar
  14. 14.
    Schleicher E, Scheller L, Wieland OH (1981) Quantitation of lysine-bound glucose of normal and diabetic erythrocyte membranes by HPLC analysis of furosine. Biochem Biophys Res Commun 99:1011–1019PubMedGoogle Scholar
  15. 15.
    Schmid-Schönbein H, Volger E (1976) Red cell aggregation and red cell deformability in diabetes. Diabetes 25 [Suppl 2]:897–902PubMedGoogle Scholar
  16. 16.
    Tannert C, Steinhoff A, Rapoport J, Elsner M, Rapoport SM (1980) ATP-abhängige and ATP-unabhängige Veränderungen der Deformierbarkeit von Humanerythrozyten. Acta Biol Med Germ 39:199–205PubMedGoogle Scholar
  17. 17.
    Vincenzi FF, Hinds TR (1980) Calmodulin and plasma membrane calcium transport. In: Calcium and Cell Function, vol I. Calmodulin. Academic Press, New York, pp 128–166Google Scholar
  18. 18.
    Weed RI, La Celle PL, Mervill W (1969) Metabolic dependence of red cell deformability. J Clin Invest 48:795–809PubMedGoogle Scholar
  19. 19.
    Wessel D, Flügge VJ (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143PubMedGoogle Scholar
  20. 20.
    Wolf HV (1973) Divalent metal ion buffers with low pH-sensitivity. Experientia 29:241–249Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. Schaefer
    • 1
  • J. Prießen
    • 1
  • R. Mannhold
    • 2
  • A. F. Gries
    • 1
  1. 1.Diabetes-Forschungsinstitut der Universität DüsseldorfGermany
  2. 2.Institut für Klinische Physiologie der Universität DüsseldorfGermany

Personalised recommendations