Klinische Wochenschrift

, Volume 64, Issue 2, pp 76–85 | Cite as

Gepulste Doppler-Echokardiographie bei prothetischem Aorten- und Mitralklappenersatz

  • H. Mattern
  • G. Fricke
Originalien
  • 14 Downloads

Abkürzungsverzeichnis

A

Vorwärtsfluß

AI

Aorteninsuffizienz

AS

Aortenstenose

AV

kombiniertes Aortenvitium

B

Rückfluß

BS

Björk-Shiley-Ventil

CE

Carpentier-Edwards-Bioprothese

CTV

Katheter-Tip-Velocitometrie

H

Strömungsamplitude (mm)

H1/T1

Strömungssteilanstieg (cm/s)

HK

Hall-Kaster-Ventil

HPX

Hancock-Bioprothese

LE

Lillehei-Kaster-Ventil

MAT

Maximale Strömungsturbulenz (%)

MI

Mitralinsuffizienz

MS

Mitralstenose

MV

kombiniertes Mitralvitium

O

Strömungsnull

PDE

gepulste Doppler-Echokardiographie

RF

Regurgitationsfraktion (%)

SE

Starr-Edwards-Ventil

SJM

St. Jude Medical-Prothese

T

Zeitabschnitt in der Strömungskurve (s)

Umax

maximale Blutströmungsgeschwindigkeit (cm/s)

{ie76-1}max

maximale Strömungsbeschleunigung (g)

Pulsed doppler echocardiography and prosthetic valve replacement

Summary

In 94 subjects with normally functioning heart valve prostheses (51 aortic and 43 mitral valve prostheses) and in 35 patients with intact aortic and mitral valves, blood flow velocity within the heart and the aortic root have been recorded using pulsed Doppler velocity studies in patients with diseased valves of the left heart. In addition, a further 7 patients were investigated using invasive catheter tip velocitometry, pre- and postoperatively. The preversus postoperative changes of maximum velocity and acceleration is characterized as follows: postoperative flow velocity tracings show approximately normal profiles comparable to normal valve function. Turbulence formation is diminished and the steep uptroke of the normal flow pattern is restituted. Differencies in transprosthetic blood flow patterns dependent on the implanted prosthesis model can be defined. Bioprostheses, in particular the Carpentier-Edwards device, reliably approximate normal amplitude-time characteristics. This is also true for the St. Jude Medical prosthesis with central flow properties. Velocitometric signs of valve dysfunction were detected in 9 patients: sensitivity was 100%; specificity ranged from 76% in aortic to 96% in mitral prostheses. Pulsed Doppler echocardiography therefore is a useful complement in the non-invasive haemodynamic tools and can be repeatedly applied to a patient with prosthetic cardiac valve replacement.

Key words

Pulsed Doppler Echocardiography Flow Velocity Aortic and Mitral Valve Replacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Caputo GR, Pearlsman AS, Namay D, Dooley TK (1980) Detection of prosthetic valve incompetence using pulsed Doppler-Echocardiography. Circulation 62 (Suppl III):252Google Scholar
  2. 2.
    Feldman HJ, Gray RJ, Chaux A, Halpern SW, Kraus R, Allen HN, Matloff JM (1982) Noninvasive in vivo and in vito study of the St. Jude mitral valve prosthesis. Am J Cardiol 49:1101–1109Google Scholar
  3. 3.
    Fricke G (1976) Analyse des pulsatilen Strömungsverhaltens im Blutkreislauf. G Thieme, StuttgartGoogle Scholar
  4. 4.
    Fricke GR, Mattern HJ (1978) Aortic blood flow velocity in left heart valve dysfunction. Circulation 58:II-191PubMedGoogle Scholar
  5. 4a.
    Fricke GR, Kirchhoff PG, Mattern H, Heck I (1984) Clinical and hemodynamical reevaluation of 80 patients with implanted porcine cardiac valve bioprostheses — Hancock I vs. Hancock II experience. Internal Colloqium on Hancock Bioprostheses, Monte Carlo, France, Oct. 5.–7., 1984Google Scholar
  6. 5.
    Hatle L, Angelsen B (1982) Doppler Ultrasound in Cardiology. Lea & Febiger, PhiladelphiaGoogle Scholar
  7. 6.
    Hoffmann A (1984) Herzdiagnostik mit Doppler-Ultraschall. G Thieme, StuttgartGoogle Scholar
  8. 7.
    Holen J, Nitter-Hauge S (1977) Evaluation of obstructive characteristics of mitral disc valve implants with ultrasound Doppler techniques. Acta Med Scand 201:429PubMedGoogle Scholar
  9. 8.
    Holen J, Simonsen S, Freysaker T (1979) An ultrasound Doppler-technique for the noninvasive determination of the pressure gradient in the Björk-Shiley mitral valve. Circulation 59:436–442PubMedGoogle Scholar
  10. 9.
    Mattern H (1982) Prothetischer Herzklappenersatz. G Thieme, StuttgartGoogle Scholar
  11. 10.
    Mattern H, Fricke G (1982) Gepulste Doppler-Echokardiographie bei Mitralvitien. Z Kardiol 71:680–688PubMedGoogle Scholar
  12. 11.
    Mattern H, Runkel W, Borning W, Fricke G (1983) Gepulste Doppler-Echokardiographie bei prothetischem Linksherzklappenersatz. Z Kardiol 72:90Google Scholar
  13. 12.
    Mattern H, Fricke G, Krück F (1984) Gepulste Doppler-Echokardiographie bei Aortenvitien. Klin Wochenschr 62:533–542PubMedGoogle Scholar
  14. 13.
    Veyrat C, Cholot N, Abithol G, Kalmanson D (1980) Noninvasive diagnosis an assessment of severity of aortic valve disease and evaluation of aortic prosthesis function using echo pulsed Doppler velocimetry. Brit Heart J 43:393–413PubMedGoogle Scholar
  15. 14.
    Walker DK, Scotten LM, Modi VJ, Brownlee RT (1980) In vitro assessment of mitral valve prostheses. J Thorac cardiovasc Surg 79:680–688PubMedGoogle Scholar
  16. 15.
    Weinstein IR, Marbacker JP, Pérez JE (1983) Ultrasonic assessment of the St. Jude prosthetic valve: M-mode, two-dimensional, and Doppler echocardiography. Circulation 68:897–905PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. Mattern
    • 1
    • 2
  • G. Fricke
    • 1
    • 2
  1. 1.Medizinische Universitäts-Poliklinik BonnGermany
  2. 2.Medizinische Klinik Nord der Städtischen Kliniken DortmundGermany

Personalised recommendations