Annali di Matematica Pura ed Applicata

, Volume 175, Issue 1, pp 93–118 | Cite as

Invariant regions for the Nernst-Planck equations

  • Giovanni Cimatti
  • Ilaria Fragalà


We consider a coupling between the Nernst-Planck equations and the Navier-Stokes system; we study the stationary and the evolution problems. The crucial property turns out to be the existence of an invariant region. An asymptotic result in the case of Neumann boundary conditions is also given.


Boundary Condition Neumann Boundary Neumann Boundary Condition Asymptotic Result Evolution Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Adamczewski,Les phénomènes d'ionisation et de conduction dans les diélectriques liquides, Masson, Paris (1968).Google Scholar
  2. [2]
    R. A. Adams,Sobolev Spaces, Academic Press, London (1975).Google Scholar
  3. [3]
    P. Atten,Stabilité electrodynamique des liquides de faible conductivité, J. Mécanique (3),14 (1975), pp. 465–495.Google Scholar
  4. [4]
    J. P. G. Auchmuty,Positivity for elliptic and parabolic systems, Proc. Roy. Soc. Edinburgh, Set A,79 (1977-78), pp. 183–191.Google Scholar
  5. [5]
    C. Bardos,Comportement asymptotique de solutions d'équations de réaction-diffusion, J. Phys., Colloque C5 (Supplement au n. 8),39 (1975), C5, pp. 61–67.Google Scholar
  6. [6]
    K. N. Chuen -C. Conley -J. Smoller,Positively invariant regions for systems of nonlinear diffusion equations, Ind. Univ. Math. J., (2),26 (1977), pp. 373–391.Google Scholar
  7. [7]
    E. Conway -D. Hoff -J. Smoller,Large time behaviour of solutions of systems of nonlinear reaction-diffusion equations, Siam J. Appl. Math., (1),35 (1978), pp. 1–16.Google Scholar
  8. [8]
    E.Feireisl,A stabilizing effect of vanishing diffusion in electrodynamics, to appear.Google Scholar
  9. [9]
    O. A. Ladyzhenskaya,The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).Google Scholar
  10. [10]
    O. A. Ladyzhenskaya -V. A. Solonnikov -N. N. Ural'ceva,Linear and Quasilinear Equations of Parabolic Type, Transl. of Math. Monographs, American Mathematical Society, Providence (1968).Google Scholar
  11. [11]
    P. Langevin,Recherches sur les gaz ionisés, Ann. Chimie Physique,28 (1903), pp. 223–235.Google Scholar
  12. [12]
    A. B. Lidiard,Ionic Conductivity, Electrical Conductivity, Springer-Verlag, Berlin (1957).Google Scholar
  13. [13]
    A. Occhialini,I gas compressi come dielettrici e come conduttori, Tipografia Editrice F. Mariotti, Pisa (1906).Google Scholar
  14. [14]
    I. Rubinstein,Electrodiffusion of Ions, SIAM, Philadelphia (1990).Google Scholar
  15. [15]
    J. Smoller,Shock Waves and Reaction Diffusion Equations, Springer-Verlag, Berlin (1983).Google Scholar
  16. [16]
    R. Temam,Navier-Stokes Equations, North-Holland, Amsterdam (1984).Google Scholar
  17. [17]
    H. F. Weinberger,Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. Univ. Roma (6),8 (1975), pp. 295–310.Google Scholar
  18. [18]
    Z. Zhang,Qualitative Theory of Differential Equations, Transl. of Math. Monographs, American Mathematical Society, Providence (1968).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1998

Authors and Affiliations

  • Giovanni Cimatti
    • 1
  • Ilaria Fragalà
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations