Annali di Matematica Pura ed Applicata

, Volume 172, Issue 1, pp 103–124 | Cite as

Inertia and invariance

  • Paolo Podio-Guidugli


An invariance argument is presented that yields the constitutive splitting of the total energy into an internal and a kinetic part, as well as a representation of the latter and the inertial forces in terms of one and the same mass tensor.


Total Energy Inertial Force Kinetic Part Mass Tensor Invariance Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beatty M. F.,On the foundation principles of general classical mechanics, Arch. Rational Mech. Anal.,27 (1967), pp. 264–273.Google Scholar
  2. Coleman B. D. -W. Noll,The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal.,13 (1963), pp. 167–178.Google Scholar
  3. Capriz G. -P. Podio-Guidugli,Structured continua from a Lagrangian point of view, Ann. Mat. Pura Appl. (IV),135 (1983), pp. 1–25.Google Scholar
  4. Capriz G. -P. Podio-Guidugli -W. O. Williams,On balance equations for materials with affine structure, Meccanica,17 (1982), pp. 80–84.Google Scholar
  5. DeSimone A. - P.Podio-Guidugli,On the continuum theory of deformable ferromagnetic solids, Arch. Rational Mech. Anal. (1996), in the press.Google Scholar
  6. Ericksen J. L.,Conservation laws for liquid crystals, Trans. Soc. Rheol.,5 (1961), pp. 23–34.Google Scholar
  7. Green A. E. -R. S. Rivlin,On Cauchy's equations of motion, Z. Angew. Math. Phys.,15 (1964a), pp. 290–292.Google Scholar
  8. Green A. E. -R. S. Rivlin,Simple force and stress multipoles, Arch. Rational Mech. Anal.,16 (1964b), pp. 325–353.Google Scholar
  9. Gurtin M. E.,An Introduction to Continuum Mechanics, Academic Press (1981).Google Scholar
  10. Gurtin M. E. -P. Podio-Guidugli,The thermodynamics of constrained materials, Arch. Rational Mech. Anal.,51 (1973), pp. 192–208.Google Scholar
  11. Gurtin M. E. -W. O. Williams,On the first law of thermodynamics, Arch. Rational Mech. Anal.,42 (1971), pp. 77–92.Google Scholar
  12. Lucchesi M. -D. R. Owen -P. Podio-Guidugli,Materials with elastic range: a theory with a view toward applications, Part III: Approximate constitutive relations, Arch. Rational Mech. Anal,117 (1992), pp. 53–96.Google Scholar
  13. Marsden J. E. - T. J. R.Hughes,Mathematical Foundations of Elasticity, Prentice-Hall (1983).Google Scholar
  14. Naghdi P. M.,The theory of shells and plates, pp. 425–640of Mechanics of Solids II,Handbuch der Physik,S. Flügge Ed., Vol. VIa/2, Springer-Verlag, Berlin, Heidelberg, New York (1972).Google Scholar
  15. Noll W.,La mécanique classique, basée sur un axiome de objectivité, pp. 47–56 ofLa Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles (Colloque International, Paris, 1959), Gauthier-Villars, Paris (1963) (reprinted inNoll's Selecta (1974)).Google Scholar
  16. Noll W.,The Foundations of Mechanics and Thermodynamics, Springer-Verlag (1974).Google Scholar
  17. Serrin J.,On the axioms of classical mechanics, unpublished (Sept. 1974).Google Scholar
  18. Serrin J.,The equations of continuum mechanics as a consequence of invariance and thermodynamical principles, Lecture at the Conference on Nonlinear Analysis and Partial Differential Equations, Rutgers University, May 1990.Google Scholar
  19. Serrin J.,The equations of continuum mechanics as a consequence of group invariance, Lecture at the Conference on Advances in Modern Continuum Dynamics, Isola d'Elba, June 1991.Google Scholar
  20. Serrin J.,Space, Time, and Energy, Lectio Doctoralis at the Universitá di Ferrara, 29 October 1992.Google Scholar
  21. Šilhavý M.,On the concepts of mass and linear momentum in Galilean thermodynamics, Czech. J. Phys., B37 (1987), pp. 133–157.Google Scholar
  22. Šilhavý M.,Mass, internal energy, and Cauchy's equations in frame indifferent thermodynamics, Arch. Rational Mech. Anal.,107 (1989), pp. 1–22.Google Scholar
  23. Šilhavý M.,Energy principle and the equations of motion in Galilean thermodynamics, Czech. J. Phys.,42 (1992), pp. 363–374.Google Scholar
  24. Simo J. C. -J. E. Marsden,On the rotated stress tensor and the material version of the Doyle-Ericksen formula, Arch. Rational Mech. Anal.,86 (1984), pp. 213–231.Google Scholar
  25. Truesdell C.,Rational Thermodynamics, 2nd ed., Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1984).Google Scholar
  26. Truesdell C.,A First Course in Rational Continuum Mechanics, Vol. 1, 2nd ed., Academic Press (1991).Google Scholar
  27. Truesdell C. - W.Noll,The Non-Linear Field Theories of Mechanics, Handbuch der Physik, Vol. III, S.Flügge Ed., Springer-Verlag (1965).Google Scholar
  28. Williams W. O., Review ofContinua with Microstructure, by G.Capriz, Springer-Verlag, New York (1989); SIAM Review, 33,1 (1991), pp. 161–163.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1997

Authors and Affiliations

  • Paolo Podio-Guidugli
    • 1
  1. 1.Dipartimento di Ingegneria CivileUniversitá di Roma «Tor Vergata»RomaItaly

Personalised recommendations