Archiv der Mathematik

, Volume 66, Issue 5, pp 372–377 | Cite as

The tensor product of Lie soluble algebras

  • David M. Riley


Tensor Product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Braun, The nilpotency of the radical in finitely generated PI-algebras. J. Algebra89, 375–396 (1984).Google Scholar
  2. [2]
    N. D. Gupta andF. Levin, On the Lie ideals of a ring. J. Algebra81, 225–231 (1983).Google Scholar
  3. [3]
    A. R. Kemer, On nonmatrix identities. Algebra i Logika19, 255–283 (1980).Google Scholar
  4. [4]
    I. B. S. Passi, D. S. Passman andS. K. Sehgal, Lie solvable group rings. Canad. J. Math.25, 748–757 (1973).Google Scholar
  5. [5]
    Y. P. Razmyslov, On Engelian Lie algebras. Algebra i Logika10, 33–44 (1971).Google Scholar
  6. [6]
    A. Regev, Existence of identities inAB. Israel J. Math.12, 253–257 (1972).Google Scholar
  7. [7]
    A. Regev, The representations ofS n and explicit identities for PI-algebras. J. Algebra51, 25–40 (1978).Google Scholar
  8. [8]
    D. M.Riley, Algebras generated by nilpotent elements of bounded index. Preprint 1995.Google Scholar
  9. [9]
    D. M. Riley andA. Shalev, The Lie structure of enveloping algebras. J. Algebra162, 46–61 (1993).Google Scholar
  10. [10]
    E. Rips andA. Shalev, The Baer condition for group algebras. J. Algebra140, 83–100 (1991).Google Scholar
  11. [11]
    R. K. Sharma andJ. B. Srivastava, Lie solvable rings. Proc. Amer. Math. Soc.94, 1–8 (1985).Google Scholar
  12. [12]
    M. B. Smirnov andA. E. Zalesski, Associative rings satisfying the identity of Lie solvability. Vestsi. Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk123, No. 2, 15–20 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • David M. Riley
    • 1
  1. 1.Department of MathematicsThe University of AlabamaTuscaloosaUSA

Personalised recommendations