, Volume 23, Issue 4, pp 191–200 | Cite as

β-Lactam/β-lactamase inhibitor combinations: Development, antibacterial activity and clinical applications

  • R. Sutherland


Public Health Internal Medicine Infectious Disease General Practice Antibacterial Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, E. P., Chain, E. An enzyme from bacteria able to destroy penicillin. Nature 146 (1940) 837.Google Scholar
  2. 2.
    Kirby, W. M. M. Extraction of a highly potent penicillin inactivator from penicillin-resistant staphyoococci. Science 99 (1944) 452–453.Google Scholar
  3. 3.
    Richmond, M. H., Sykes, R. B. The β-lactamases of gram-negative bacteria and their possible physiological role. In:Rose, A. H., Tempest, D. W. (eds.): Advances in microbial physiology. Academic Press, London and New York 1973, vol. 9, pp. 31–88.Google Scholar
  4. 4.
    Datta, N., Kontomichalou, P. Penicillinase synthesis controlled by infectious R-factors inEnterobacteriaceae. Nature 208 (1965) 239–241.PubMedGoogle Scholar
  5. 5.
    Sutherland, R. Bacterial resistance to β-lactam antibiotics: problems and solutions. In:Jucker, E. (ed.): Drug Research. Birkhauser Verlag, Basel 1993, vol. 41, pp. 95–149.Google Scholar
  6. 6.
    Hamilton-Miller, J. M. T., Smith, J. T., Knox, R. Potentiation of penicillin action by inhibition of penicillinase. Nature 201 (1964) 867–868.PubMedGoogle Scholar
  7. 7.
    Sutherland, R., Batchelor, F. R. Synergistic activity of penicillins against penicillinase-producing gram-negative bacilli. Nature 201 (1964) 868–869.PubMedGoogle Scholar
  8. 8.
    Cole, M. Inhibitors of bacterial β-lactamases. Drugs of the Future 6 (1981) 697–727.Google Scholar
  9. 9.
    Brown, A. G., Butterworth, D., Cole, M., Hanscombe, G., Hood, J. D., Reading, C., Rolinson, G. N. Naturally occurring beta-lactam inhibitors with antibacterial activity. J. Antibiot. 29 (1976) 668–669.PubMedGoogle Scholar
  10. 10.
    Reading, C., Cole, M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam fromStreptomyces clavuligerus. Antimicrob. Agents Chemother. 11 (1977) 852–857.PubMedGoogle Scholar
  11. 11.
    von Daehne, W. 6 β-Halopenicillanic acids, a group of β-lactamasc inhibitors. J. Antibiot. 33 (1980) 451–452.PubMedGoogle Scholar
  12. 12.
    Melchior, N. H., Keiding, J. In vitro evaluation of ampicillin/brobactam and comparison with other β-lactam antibiotics. J. Antimicrob. Chemother. 27 (1991) 29–40.Google Scholar
  13. 13.
    Wise, R., O'Sullivan, N., Johnson, J., Andrews, J. M. Pharmacokinetics and tissue penetration of ampicillin and brobactam following oral administration of 2085P. Antimicrob. Agents Chemother. 36 (1992) 1002–1004.PubMedGoogle Scholar
  14. 14.
    Chin, N.-X., McElrath, M. J., Neu, H. C. Beta-lactamase inhibition by acetyl methylene penicillanic acid compared to that of clavulanate and sulbactam. Chemotherapy 34 (1988) 318–325.PubMedGoogle Scholar
  15. 15.
    Coleman, K., Griffin, D. R. J., Page, J. W., Upshon, P. A. In vitro evaluation of BRL 42715, a novel β-lactamase inhibitor. Antimicrob. Agents Chemother. 33 (1989) 1580–1587.PubMedGoogle Scholar
  16. 16.
    Reading, C., Slocombe, B. Augmentin: clavulanate-potentiated amoxicillin. In:Queener, S. F., Webber, A. J., Queener, S. W. (eds.): Beta-lactam antibiotics for clinical use. Marcel Dekker, Inc., New York, Basel 1986, pp. 527–592.Google Scholar
  17. 17.
    Kemal, C., Knowles, J. R. Penicillanic acid sulfone: interaction with R TEM β-lactamase fromEscherichia coli at different pH values. Biochemistry 20 (1981) 3688–3695.PubMedGoogle Scholar
  18. 18.
    Bush, K., Macalintal, C., Rasmussen, B., Lee, V. J., Yang, Y. Kinetic interactions by tazobactam with β-lactamases from all major structural classes. Antimicrob. Agents Chemother. 37 (1993) 851–858.PubMedGoogle Scholar
  19. 19.
    Bush, K. β-Lactamase inhibitors from laboratory to clinc. Clin. Microb. Rev. 1 (1988) 109–123.Google Scholar
  20. 20.
    Bauernfeind, A. Perspectives of beta-lactamase inhibitors in therapy of infections caused byEscherichia coli orKlebsiella with plasmidic resistance to third generation cephalosporins. Infection 18 (1990) 48–52.PubMedGoogle Scholar
  21. 21.
    Gutmann, L., Kitzis, M. D., Yanabe, S., Acar, J. F. Comparative evaluation of a new β-lactamase inhibitor, YTR 830, combined with different β-lactam antibiotics against bacteria harbouring known β-lactamases. Antimicrob. Agents Chemother. 29 (1986) 955–957.PubMedGoogle Scholar
  22. 22.
    Slocombe, B., Beale, A. S., Boon, R. J., Griffin, K. E., Masters, P. J., Sutherland, R., White, A. R. Antibacterial activityin vitro andin vivo of amoxicillin in the presence of clavulanic acid. Postgrad. Med. 76 (1984) 29–49.Google Scholar
  23. 23.
    Sutherland, R., Beale, A. S., Boon, R. J., Griffin, K. E., Slocombe, B., Stokes, D. H., White, A. R. Antibacterial activity of ticarcillin in the presence of clavulanate potassium. Am. J. Med. 79 (Suppl. 5B) (1985) 13–24.Google Scholar
  24. 24.
    Rolinson, G. N. A review of the microbiology of amoxycillin/clavulanic acid over the 15-year period 1978–1993. J. Chemother. 6 (1994) 283–318.PubMedGoogle Scholar
  25. 25.
    Barry, A. L., Pfaller, M. A., Fuchs, P. C. The antibacterial activity of co-amoxiclav. J. Antimicrob. Chemother. 33 (1993) 612–615.Google Scholar
  26. 26.
    Todd, P. A., Benfield, P. Amoxicillin/clavulanic acid: an update of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 39 (1990) 264–307.PubMedGoogle Scholar
  27. 27.
    Neu, H. C., Wilson, A. P. R., Grüneberg, R. N. Amoxicillin/clavulanic acid: a review of its efficacy in over 38,500 patients from 1979 to 1992. J. Chemother. 5 (1993) 67–93.PubMedGoogle Scholar
  28. 28.
    McLaughlin, J. C., Barry, A. L., Fuchs, P. C., Gerlach, E. H., Hardy, D. J., Pfaller, M. A. In vitro activity of five β-lactam/β-lactamase inhibitor combinations against consecutive isolates ofEnterobacteriaceae andPseudomonas aeruginosa. J. Antimicrob. Chemother. 33 (1994) 223–230.PubMedGoogle Scholar
  29. 29.
    Leigh, D. A., Phillips, I., Wise, R. (eds.): Ticarcillin plus clavulanic acid. A laboratory and clinical perspective. J. Antimicrob. Chemother. 17 (Suppl. C) (1986) 1–240.Google Scholar
  30. 30.
    English, A. R., Retsema, J. A., Giraud, A. E., Lynch, J. E., Barth, W. E. CP-45, 899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterizations. Antimicrob. Agents Chemother. 14 (1978) 414–419.PubMedGoogle Scholar
  31. 31.
    Campoli-Richards, D. M., Brogden, R. N. Sulbactam/ampicillin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 33 (1987) 577–609.PubMedGoogle Scholar
  32. 32.
    Fuchs, P. C., Barry, A. L., Pfaller, M. A., Hardy, D. J., McLauglin, J. C., Gerlach, E. H. In vitro activity of ampicillin, amoxicillin, ampicillin-sulbactam and amoxicillin-clavulanic acid against consecutive clinical isolates ofEnterobacteriaceae. Diagn. Microbiol. Infect. Dis. 17 (1993) 171–175.PubMedGoogle Scholar
  33. 33.
    Hartley, S., Wise, R. A three-way crossover study to compare the pharmacokinetics and acceptability of sultamicillin at two dose levels with that of ampicillin. J. Antimicrob. Chemother. 10 (1982) 49–55.PubMedGoogle Scholar
  34. 34.
    Baltzer, B., Binderup, E., von Daehne, W., Godtfredsen, W. O., Hansen, K., Neilsen, B., Sorensen, H., Vangedel, S. Mutual prodrugs of β-lactam antibiotics and β-lactamase inhibitors. J. Antibiot. 33 (1980) 1183–1192.PubMedGoogle Scholar
  35. 35.
    Friedel, H. A., Campoli-Richards, D. M., Goa, K. L. Sultamicillin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 37 (1989) 491–522.PubMedGoogle Scholar
  36. 36.
    Jones, R. N., Wilson, H. W., Thornsberry, C., Barry, A. L. In vitro antimicrobial activity of cefoperazone combinations against 554 clinical isolates including a review and beta-lactamase studies. Diagn. Microbiol. Infect. Dis. 3 (1985) 489–499.PubMedGoogle Scholar
  37. 37.
    Dias, M. B. S., Jacobus, N. V., Tally, F. P. In vitro activity of cefoperazone-sulbactam againstBacteroides species. J. Antimicrob. Chemother. 18 (1986) 467–471.PubMedGoogle Scholar
  38. 38.
    Jauregui, L. E., Appelbaum, P. C., Fabian, T. C., Hageage, G., Strausbaugh, L., Martin, L. F. A randomized clinical study of cefoperazone and sulbactam versus gentamicin and clindamycin in the treatment of intra-abdominal infections. J. Antimicrob. Chemother. 25 (1990) 423–433.PubMedGoogle Scholar
  39. 39.
    Bodey, G. P., Elting, L. S., Nasso, J., Koller, C., O'Brien, S., Estey, E., Benjamin, R. An open trial of cefoperazone plus sulbactam for the treatment of fever in cancer patients. J. Antimicrob. Chemother. 32 (1993) 141–152.Google Scholar
  40. 40.
    Wildfeuer, A., Schmalreck, A., Räder, K., Eibel, G., Pfaff, G. Studies on the synergism of sulbactam and β-lactam antibiotics underin vitro conditions and in healthy volunteers after intravenous administration. Arzneim.-Forsch./Drug Research 39 (1989) 94–100.Google Scholar
  41. 41.
    Manncke, K., Springsklee, M., Heizmann, W. R., Sonntag, H. G. Sulbactam in Kombination mit Mezlocillin, Piperacillin oder Cefotaxim. Med. Klin. 86 (1991) 454–460.PubMedGoogle Scholar
  42. 42.
    Eliopoulos, G. M., Klimm, K., Ferraro, M. J., Jacoby, G. A., Moellering, R. C. Comparativein vitro activity of piperacillin combined with the β-lactamase inhibitor tazobactam (YTR 830). Diagn. Microbiol. Infect. Dis. 12 (1989) 482–488.Google Scholar
  43. 43.
    Bryson, H. M., Brogden, R. N. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs. 47 (1994) 506–535.PubMedGoogle Scholar
  44. 44.
    Sanders, W. E. Jnr., Sanders, C. C. Inducible β-lactamases: clinical and epidemiological implications for use of newer cephalosporins. Rev. Infect. Dis. 10 (1988) 830–838.PubMedGoogle Scholar
  45. 45.
    European Study Group on Antibiotic Resistance Incidence of inducible β-lactamases in gram-negative isolates from twenty-nine European laboratories. Eur. J. Clin. Microbiol. 6 (1987) 460–466.Google Scholar
  46. 46.
    Seetulsingh, P. S., Hall, L. M. C., Livermore, D. M. Activity of clavulanate combinations against TEM-1 β-lactamase-producingEscherichia coli isolates obtained in 1982 and 1989. J. Antimicrob. Chemother. 27 (1991) 749–759.PubMedGoogle Scholar
  47. 47.
    Wu, P.-J., Shannon, K., Phillips, I. Effect of hyperproduction of TEM-1 β-lactamase onin vitro susceptibility ofEscherichia coli to β-lactam antibiotics. Antimicrob. Agents Chemother. 38 (1994) 494–498.PubMedGoogle Scholar
  48. 48.
    Thomson, C. J., andAmyes, S. G. B. Selection of variants of the TEM-1 β-lactamase encoded by a plasmid of clinical origin with increased resistance to β-lactamase inhibitors. J. Antimicrob. Chemother. 31 (1993) 655–664.PubMedGoogle Scholar
  49. 49.
    Blazquez, J., Banquero, M.-R., Canton, R., Alos, I., Banquero, F. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sulbactam and tazobactam in a clinical isolate ofEscherichia coli. Antimicrob. Agents Chemother. 37 (1993) 2059–2063.PubMedGoogle Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1995

Authors and Affiliations

  • R. Sutherland
    • 1
  1. 1.GB-SurreyUK

Personalised recommendations