Annali di Matematica Pura ed Applicata

, Volume 140, Issue 1, pp 393–415 | Cite as

Analytic semigroups generated on hölder spaces by second order elliptic systems under Dirichlet boundary conditions

  • Piermarco Cannarsa
  • Vincenzo Vespri
Article

Keywords

Boundary Condition Dirichlet Boundary Dirichlet Boundary Condition Elliptic System Analytic Semigroup 

Sunto

Si studia il problema della generazione di semigruppi analitici, nella topologia hölderiana, per un operatore ellittico del tipo\(\left\{ \begin{gathered} Eu(x) = \sum\limits_{ij = 1}^n {A_{ij} (x)D_{ij} u} (x) + \sum\limits_{j = 1}^n {B_j (x)D_j u(x) + C(x)u} (x) \hfill \\ x \in \Omega \subset \subset R^n ,u:\Omega \to C^N , \hfill \\ \end{gathered} \right.\) con dati al bordo di Dirichlet e supponendo i coefficienti Aij continui in\(\bar \Omega \).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.Acquistapace - B.Terreni,Maximal space regularity for abstract non-autonomous parabolic equations, pre-print n. 30 Dipartimento di Matematica Univ. Pisa, September 1983.Google Scholar
  2. [2]
    S. Campanato,Propriétà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa,17 (1963), pp. 175–188.Google Scholar
  3. [3]
    S. Campanato,Generation of analytic semigroups, in the Hölder topology, by elliptic operators of second order with Neumann boundary condition, Le Matematiche,35 (1980), pp. 61–72.Google Scholar
  4. [4]
    S.Campanato,Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni Scuola Norm. Sup. Pisa, 1980.Google Scholar
  5. [5]
    S. Campanato,Generation of analytic semigroups by elliptic operators of second order in Hölder spaces, Ann. Scuola Norm. Sup. Pisa,8 (1981), pp. 495–512.Google Scholar
  6. [6]
    P.Cannarsa - B.Terreni - V.Vespri,Analytic semigroups generated by non variational elliptic systems of second order under Dirichlet boundary conditions, pre-print n. 53 Dipartimento di Matematica Univ. Pisa, March 1984 (to appear in J. Math. An. Appl.).Google Scholar
  7. [7]
    T. Kato,Perturbation theory for linear operators, Springer-Verlag, New York, 1966.Google Scholar
  8. [8]
    J. L. Lions,Equations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961.Google Scholar
  9. [9]
    A.Lunardi,Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, to appear in Math. Nachr.,116 (1984).Google Scholar
  10. [10]
    A. Pazy,Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.Google Scholar
  11. [11]
    W. von Wahl,Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. II, (1972), pp. 231–258.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1985

Authors and Affiliations

  • Piermarco Cannarsa
    • 1
  • Vincenzo Vespri
    • 2
  1. 1.Livorno
  2. 2.Pisa

Personalised recommendations