Journal of Muscle Research & Cell Motility

, Volume 9, Issue 5, pp 370–383 | Cite as

Fluorescent phallotoxins as probes for filamentous actin

  • Heinz Faulstich
  • S. Zobeley
  • G. Rinnerthaler
  • J. V. Small


Phallotoxins have been conjugated to four different fluorescent labels: fluorescein, tetramethylrhodamine, nitrobenzoxadiazole and coumarine. Although endowed with different substrate affinities, they are all specific for polymeric actin.

Useful advantage can and has been taken of the special characteristics of the fluorescent phallotoxin derivatives. Among them:
  1. 1.

    Their specific labelling of F-actin, native or chemically fixed, in a simple one-step procedure, making them useful probes for single and multiple fluorescent labelling of cytoskeletal and other preparations.

  2. 2.

    Their stabilization of F-actin against depolymerization and benign effects on actomyosin-based movement, important factors inin vitro motility systems. The stabilizing effect of phalloidin leads also to improved structural preservation in immunofluorescence preparations.

  3. 3.

    Their small size, allowing ready penetration into cytoskeletal networks, in fixed and living cells.

  4. 4.

    Their long-term stability, dry or in organic solvents.


From their various useful properties we can expect fluorescent phallotoxins to find further and new applications in studies of actin-based phenomena.


Organic Solvent Fluorescein Coumarine Phalloidin Fluorescent Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A. E. M. &Pringle, J. R. (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant ofSaccharomyces cerevesiae.J. Cell Biol. 98, 934–45.PubMedGoogle Scholar
  2. Amato, P. A., Unanue, E. R. &Taylor, D. L. (1983) Distribution of actin in spreading macrophages: A comparative study on living and fixed cells.J. Cell Biol. 96, 750–61.PubMedGoogle Scholar
  3. Atherton, B. T., Meyer, D. M. &Simpson, D. G. (1986) Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal and rat heart cells.J. Cell Sci. 86, 233–48.PubMedGoogle Scholar
  4. Barak, L. S. &Webb, W. W. (1982) Diffusion of low density lipoprotein-receptor complex on human fibroblasts.J. Cell Biol. 95, 846–52.PubMedGoogle Scholar
  5. Barak, L. S., Yocum, R. R., Nothnagel, E. A. &Webb, W. W. (1980) Fluorescene staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazolephallacidin.Proc. Natl. Acad. Sci. U.S.A. 77, 980–4.PubMedGoogle Scholar
  6. Barak, L. S., Yocum, R. R. &Webb, W. W. (1981) In-vivo staining of cytoskeletal actin by autointernalization of non-toxic concentrations of NBDPC.J. Cell Biol. 89, 368–77.PubMedGoogle Scholar
  7. Bassi, M. &Donini, A. (1984) Phallotoxin visualization of F-actin in normal and chromium poisoned Euglena cells.Cell Biol. Int. Rep. 8, 867–71.PubMedGoogle Scholar
  8. Bengtson, T., Stendhal, O. &Andersson, T. (1986) The role of the cytosolic free Ca2+ transient for Met-Leu-Phe induced actin polymerization in human neutrophils.Eur. J. Cell Biol. 42, 338–43.PubMedGoogle Scholar
  9. Bertin, J., Frosch, M. &Lee, P. E. (1987) Formation and maintenance of viroplasmic centers inTipula iridescent virus-infected mosquito cells with deranged cytoskeletons.Eur. J. Cell Biol. 43, 215–22.PubMedGoogle Scholar
  10. Boschek, G. B. (1982) Organizational changes of cytoskeletal proteins during cell transformation.Adv. Viral Oncol. 1, 173–87.Google Scholar
  11. Boschek, G. B., Jockusch, B. M., Friis, R. R., Back, R., Grundmann, E. &Bauer, H. (1981) Early changes in the distribution and organisation of microfilament proteins during cell transformation.Cell 24, 175–84.PubMedGoogle Scholar
  12. Bukatina, A. Y., Sonkin, B. Y., Alevskaya, L. L. &Yashin, V. A. (1984) Sarcomere structure in the rabbit psoas muscle as revealed by fluorescent analogs of phalloidin.Histochemistry 81, 301–4.PubMedGoogle Scholar
  13. Carley, W. C., Bretscher, A. &Webb, W. W. (1985) F-actin aggregates in transformed cells contain α-actinin and fimbrin but apparently lack tropomyosin.Eur. J. Cell Biol. 39, 313–20.Google Scholar
  14. Carron, C. P., Hwo, S., Dingus, J., Benson, D. M., Meza, I. &Bryan, J. (1986) A re-evaluation of cytoplasmic gelsolin localization.J. Cell Biol. 102, 237–45.PubMedGoogle Scholar
  15. Cody, R. L. &Wicha, M. S. (1986) Clustering of cell surface laminin enhances its association with the cytoskeleton.Exp. Cell Res. 165, 107–16.PubMedGoogle Scholar
  16. Connolly, J. A. &Graham, A. J. (1985) Actin filaments and acetylcholine receptor clusters in embryonic chick myotubes.Eur. J. Cell Biol. 37, 191–5.PubMedGoogle Scholar
  17. Cooper, J. A. (1987) Effects of cytochalasin and phalloidin on actin.J. Cell Biol. 105, 1473–8.PubMedGoogle Scholar
  18. Cooper, J. A., Blum, J. D. &Pollard, T. D. (1984) Acanthamoeba castellanii capping protein: properties, mechanism of action, immunologie cross-reactivity, and localization.J. Cell Biol. 99, 217–25.PubMedGoogle Scholar
  19. Couchman, J. R., Badley, R. A. &Rees, D. A. (1983) Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts.J. Musc. Res. Cell Motility 4, 647–61.Google Scholar
  20. David-Pfeuty, T. (1985) The coordinate organization of vinculin and of actin filaments during the early stages of fibroblast spreading on a substratum.Eur. J. Cell Biol. 36, 195–200.PubMedGoogle Scholar
  21. Dlugosz, A. A., Antin, D. B., Nachmias, V. T. &Holtzer, H. (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes.J. Cell Biol. 99, 2268–78.PubMedGoogle Scholar
  22. Dunn, G. A. &Brown, A. F. (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation.J. Cell Sci. 83, 313–40.PubMedGoogle Scholar
  23. Estes, J. E., Selden, L. A. &Gershman, L. C. (1981) Mechanism of action of phalloidin on the polymerization of muscle actin.Biochemistry 20, 708–12.PubMedGoogle Scholar
  24. Euteneuer, V. &Schliwa, M. (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules.Nature 310, 58–61.PubMedGoogle Scholar
  25. Faulstich, H. (1982) Structure-activity relationship of actin-binding peptides. InChemistry of Peptides and Proteins (edited byVoelter, W., Wünsch, E., Ovchinnikov, Y. &Ivanov, V.), Vol. 1, pp. 279–88, New York: W. de Gruyter.Google Scholar
  26. Faulstich, H. &Münter, K. (1986) New aspects of phalloidin poisoning.Klin. Wschr. 64 (Suppl. VII), 66–70.PubMedGoogle Scholar
  27. Faulstich, H., Schäfer, A. J. &Weckauf, M. (1977) The dissociation of the phalloidinactin complex.Hoppe-Seyler's Z. Physiol. Chem. 358, 181–4.PubMedGoogle Scholar
  28. Faulstich, H., Trischmann, H. &Mayer, D. (1983) Preparation of tetramethyl-rhodaminyl-phalloidin and uptake of the toxin into short term cultured hepatocytes by endocytosis.Exp. Cell Res. 144, 73–82.PubMedGoogle Scholar
  29. Fishman, M. C. &Dragsten, P. R. (1981) Immobilization of concanavalin A receptors during differentiation of neuroblastoma cells.Nature 290, 781–3.PubMedGoogle Scholar
  30. Friedman, E., Verderame, M., Lipkin, M. &Pollack, R. (1985) Paradigm of actin cable loss does not apply to human colon tumor development.Proc. Amer. Assoc. Cancer Res. 26, 131.Google Scholar
  31. Friedman, E., Verderame, M., Winawer, S. &Pollack, R. (1984) Actin cytoskeletal organization loss in the benign-to-malignant tumor transition in cultured human colonic epithelial cells.Cancer Res. 44, 3040–6.PubMedGoogle Scholar
  32. Füchtbauer, A., Jockusch, B. M., Leberer, E. &Pette, D. (1986) Actin-severing activity copurifies with fructokinase.Proc. Natl. Acad. Sci. U.S.A. 83, 9502–6.PubMedGoogle Scholar
  33. Füchtbauer, A., Jockusch, B. M., Maruta, H., Kilimann, M. W. &Isenberg, G. (1983) Disruption of microfilament organization after injection of F-actin capping proteins into living tissue culture cells.Nature 304, 361–4.PubMedGoogle Scholar
  34. Gabbiani, G., Montesano, R., Tuchweber, B., Salas, M. &Orci, L. (1975) Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes.Lab. Invest. 33, 562–9.PubMedGoogle Scholar
  35. Gawlita, W., Hinssen, H. &Stockem, W. (1980) The influence of an actin-modulating protein (AM-protein) fromPhysarum polycephalum on the cell motility ofAmoeba proteus.Eur. J. Cell Biol. 23, 43–52.PubMedGoogle Scholar
  36. Geiger, B., Volk, T. &Volberg, T. (1985) Molecular heterogeneity of adherens junctions.J. Cell Biol. 101, 1523–31.PubMedGoogle Scholar
  37. Giloh, H. &Sedat, J. W. (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate.Science (Wash.) 217, 1252–5.Google Scholar
  38. Gordon, S. R. (1983) The localization of actin in dividing cornea epithelial cells demonstrated with NBD phallacidin.Cell Tissue Res. 229, 533–9.PubMedGoogle Scholar
  39. Gordon, S. R. &Essner, E. (1987) Investigations on circumferential microfilament bundles in rat retinal pigment epithelium.Eur. J. Cell Biol. 44, 97–104.PubMedGoogle Scholar
  40. Gordon, S. R., Essner, E. &Rothstein, H. (1981) Thein situ localization of actin in ocular tissues with NBD phallacidin.IRCS Med. Sci. 9, 956–7.Google Scholar
  41. Gordon, S. R., Essner, E. &Rothstein, H. (1982)In situ demonstration of actin in normal and injured ocular tissues using NBD phallacidin.Cell Motility 4, 343–54.Google Scholar
  42. Götz Von Olenhausen, K. &Wohlfarth-Botter-Mann, K. E. (1979) Evidence for actin transformation during the contraction-relaxation cycle of cytoplasmic actomyosin: cycle blockade by phalloidin injection.Cell Tissue Res. 196, 455–70.PubMedGoogle Scholar
  43. Govindan, V. M., Faulstich, H., Wieland, Th., Agostini, B. &Hasselbach, W. (1972)In vitro effect of phalloidin on a plasma membrane preparation from rat liver.Naturwissenschaften 59, 521–2.Google Scholar
  44. Green, K. J., Geiger, B., Jones, J. C. R., Talian, J. C. &Goldman, R. D. (1987) The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherenstype junctions in mouse epidermal keratinocytes.J. Cell Biol. 104, 1389–402.PubMedGoogle Scholar
  45. Green, K. J., Talian, J. C. &Goldman, R. D. (1986) Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading.Cell Motility Cytoskel. 6, 406–18.PubMedGoogle Scholar
  46. Guo, J. X., Jacobson, S. L. &Brown, D. L. (1986) Rearrangement of tubulin, actin and myosin in cultured ventricular cardiomyocytes of the adult rat.Cell Motility Cytoskel. 6, 291–304.PubMedGoogle Scholar
  47. Gutzeit, H. (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles.J. Cell Sci. 80, 159–69.PubMedGoogle Scholar
  48. Hamaguchi, Y. &Mabuchi, I. (1982) Effects of phalloidin microinjection and localization of fluorescein-labelled phalloidin in living sand dollar eggs.Cell Motility 2, 103–13.PubMedGoogle Scholar
  49. Harada, Y., Noguchi, A., Kishino, A. &Yanagida, T. (1987) Sliding movement of single actin filaments on one-headed myosin filaments.Nature 326, 805–7.PubMedGoogle Scholar
  50. Heath, I. B. (1987) Preservation of labile cortical array of actin filaments in growing hyphal tips of the fungusSaprolegnia ferax.Eur. J. Cell Biol. 44, 10–16.Google Scholar
  51. Henson, J. H. &Schatten, G. (1983) Calcium regulation of the actin-mediated cytoskeletal transformation of sea urchin coelomocytes.Eur. J. Cell Biol. 24, 176–83.Google Scholar
  52. Heslop-Harrison, J., Heslop-Harrison, Y., Cresti, M., Tiezzi, A. &Ciampolini, F. (1986) Actin during pollen germination.J. Cell Sci. 86, 1–8.Google Scholar
  53. Hoch, H. C. &Staples, R. C. (1983) Visualization of actinin situ by rhodamine-conjugated phalloin in the fungusUromyces phaseoli.Eur. J. Cell Biol. 32, 52–8.PubMedGoogle Scholar
  54. Hoffmann, H.-U., Stockem, W. &Gruber, B. (1984) Dynamics of the cytoskeleton inAmoeba proteus: II. Influence of different agents on the spatial organization of microinjected fluorescein-labelled actin.Protoplasma 119, 79–92.Google Scholar
  55. Honda, H., Nagashima, H. &Asakura, S. (1986) Directional movement of F-actinin vitro.J. molec. Biol. 191, 131–3.PubMedGoogle Scholar
  56. Howard, T. H. &Oresajo, C. O. (1985) The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils.J. Cell Biol. 101, 1078–85.PubMedGoogle Scholar
  57. Hynes, T. R., Block, S. M., White, B. T. &Spudich, J. A. (1987) Movements of myosin fragmentsin vitro: domaine involved in force production.Cell 48, 953–63.PubMedGoogle Scholar
  58. Ishigami, M. (1986) Dynamic aspects of the contractile system inPhysarum plasmodium: I. Changes in spatial organization of the cytoplasmic fibrils according to the contraction-relaxation cycle.Cell Motility Cytoskel. 6, 439–47.Google Scholar
  59. Ishigami, M., Kuroda, K. &Hatano, S. (1987) Dynamic aspects of the contractile system inPhysarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils.J. Cell Biol. 105, 381–6.PubMedGoogle Scholar
  60. Jahn, W., Faulstich, H., Deboben, A. &Wieland, Th. (1980) Formation of actin clusters in rat liver parenchymal cells on phalloidin poisoning as visualized by a fluorescent phallotoxin.Z. Naturforsch. 35c, 467–9.Google Scholar
  61. Jockusch, M. B., Füchtbauer, A., Wiegand, C. &Höner, B. (1986) Probing the cytoskeleton by microinjection. InCell and Molecular Biology of the Cytoskeleton (edited byShay, J. W.), pp. 1–40. New York: Plenum Publ. Corp.Google Scholar
  62. Johnson, G. D., Davidson, R. S., McNamee, K. C., Russell, G., Goodwin, D. &Holborow, E. J. (1982) Fading of immunofluorescence during microscopy: a study of the phenomena and its remedy.J. Immunol. Meth. 55, 231–42.Google Scholar
  63. Jordan, T. W. &Pedersen, J. S. (1986) Sporidesmin and gliotoxin induce cell detachment and perturb microfilament structure in cultured cells.J. Cell Sci. 85, 33–46.PubMedGoogle Scholar
  64. Kersken, H., Momayezi, M., Braun, C. &Plattner, H. (1986a) Filamentous actin in Paramecium cells: Functional and structural changes correlated with phalloidin affinity labellingin vivo.J. Histochem. Cytochem. 34, 455–65.PubMedGoogle Scholar
  65. Kersken, H., Vilmart-Seuwen, J., Momayezi, M. &Plattner, H. (1986b) Filamentous actin in Paramecium cells: Mapping by phalloidin affinity labellingin vivo andin vitro.J. Histochem. Cytochem. 34, 443–54.PubMedGoogle Scholar
  66. Kilmartin, J. V. &Adams, A. E. M. (1984) Structural rearrangement of tubulin and actin during the cell cycle of the yeastSaccharomyces.J. Cell Biol. 98, 922–33.PubMedGoogle Scholar
  67. Koonce, M. P., Euteneuer, V., McDonald, K. L., Menzel, D. &Schliwa, M. (1986) Cytoskeletal architecture and motility in a giant freshwater amoeba,Reticulomyxa.Cell Motility Cytoskel. 6, 521–33.PubMedGoogle Scholar
  68. Kordell, E., Cartaud, J., Nghiem, H. O. &Changeux, J.-P. (1987)In situ localization of soluble and filamentous actin inTorpedo marmorata electrocyte.Biol. Cell 59, 61–8.PubMedGoogle Scholar
  69. Kron, S. J. &Spudich, J. A. (1986) Fluorescent actin filaments move on myosin fixed to a glass surface.Proc. Natl. Acad. Sci. U.S.A. 83, 6272–6.PubMedGoogle Scholar
  70. Kukulies, J. &Stockem, W. (1985) Function of the microfilament system in living cell fragments ofPhysarum polycephalum as revealed by microinjection of fluorescent analogues.Cell Tissue Res. 242, 323–32.Google Scholar
  71. Lampugnani, M. G., Pedenovi, M., Niewiarowski, A., Casali, B., Donati, M. B., Corbascio, G. G. &Marchisio, P. C. (1987) Effects of dimethylsulfoxide (DMSO) on microfilament organization, cellular adhesion, and growth of cultured mouse B16 melanoma cells.Exp. Cell Res. 172, 385–96.PubMedGoogle Scholar
  72. Lazarides, E. &Weber, K. (1974) Actin antibody: The specific visualization of actin filaments in non-muscle cells.Proc. Natl. Acad. Sci. U.S.A. 71, 2268–72.PubMedGoogle Scholar
  73. Lengsfeld, A. M., Löw, I., Wieland, Th., Dancker, P. &Hasselbach, W. (1974) Interaction of phalloidin with actin.Proc. Natl. Acad. Sci. U.S.A. 71, 2803–7.PubMedGoogle Scholar
  74. Löw, I. &Dancker, P. (1976) Effect of cytochalasin B on formation and properties of muscle F-actin.Biochim. Biophys. Acta 430, 366–74.PubMedGoogle Scholar
  75. Lutz, F., Glossmann, H. &Frimmer, M. (1972) Binding of [3H]-Demethylphalloin to isolated plasma membranes from rat liver.Naunyn-Schmiedebergs Arch. Pharmacol. 273, 341–51.PubMedGoogle Scholar
  76. Maekawa, S., Endo, S. &Sakai, H. (1987) A high molecular weight actin binding protein. Its localization in the cortex of the sea urchin egg.Exp. Cell Res. 172, 340–53.PubMedGoogle Scholar
  77. Magee, A. I., Lytton, N. A. &Watt, F. A. (1987) Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes.Exp. Cell Res. 172, 43–53.PubMedGoogle Scholar
  78. Marchisio, P. C., Cirillo, D., Teti, A., Zambonin-Zallone, A. &Tarone, G. (1987) Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament-membrane interactions.Exp. Cell Res. 169, 202–14.PubMedGoogle Scholar
  79. Marks, J. &Hyams, J. S. (1985) Localization of F-actin through the cell division cycle ofSacharomyces pombe.Eur. J. Cell Biol. 39, 27–33.Google Scholar
  80. Mayer, D. &Faulstich, H. (1983) Two sites of intracellular localization of rhodaminyl-phalloidin in hepatocytes.Biol. Cell 48, 143–50.PubMedGoogle Scholar
  81. McOsker, C. C. &Bretscher, A. (1985) Fodrin is part of a filamentous cortical sheath of the detergent resistant cytoskeleton of cultured cells before and after cytochalasin treatment.Eur. J. Cell Biol. 39, 321–7.Google Scholar
  82. Münter, K., Mayer, D. &Faulstich, H. (1986) Characterization of a transport system in rat hepatocytes. Studies with competitive and non-competitive inhibitors of phalloidin transport.Biochim. Biophys. Acta 860, 91–8.PubMedGoogle Scholar
  83. Naib-Majani, W., Stockem, W., Weber, K., Wehland, J. &Wohlfarth-Bottermann, K. E. (1983) Cytoplasmic actin patterns inPhysarum as revealed by NBD-phallacidin staining.Cell Biol. Int. Rep. 7, 637–40.PubMedGoogle Scholar
  84. Nicholson, N. R., Verderame, M., Lipkin, M. &Pollack, R. E. (1981) F-Actin pattern quantitated with FL-phalloidin in skin fibroblasts of individuals genetically predisposed to colon cancer. InInternational Cell Biology (edited bySchweiger, H. G.), pp. 331–5. Berlin, Heidelberg: Springer.Google Scholar
  85. Nishida, E., Iida, K., Yonezawa, N., Koyasu, S., Yahara, I. &Sakai, H. (1987) Cofilin is a component of intranuclear and cytoplasmic action rods induced in cultured cells.Proc. Natl. Acad. Sci. U.S.A. 84, 5262–6.PubMedGoogle Scholar
  86. Nothnagel, E. A., Barak, L. S., Sanger, J. W. &Webb, W. W. (1984) Fluorescence studies on modes of cytochalasin B and phallotoxin actin on cytoplasmic streaming inChara.J. Cell Biol. 88, 364–72.Google Scholar
  87. O'Keefe, E. J. O., Briggaman, R. A. &Herman, B. (1987) Calcium-induced assembly of adherens junctions in keratinocytes.J. Cell Biol. 105, 807–17.PubMedGoogle Scholar
  88. Paddock, S. W. &Albrecht-Buehler, G. (1986) Distribution of microfilament bundles during rotation of the nucleus in 3T3 cells treated with monensin.Exp. Cell Res. 163, 525–38.PubMedGoogle Scholar
  89. Palevitz, B. A. (1987) Actin in the preprophase band ofAllium cepa.J. Cell Biol. 104, 1515–19.PubMedGoogle Scholar
  90. Parke, J., Miller, C. &Anderton, B. H. (1986) Higher plant myosin heavy-chain identified using a monoclonal antibody.Eur. J. Cell Biol. 41, 9–13.Google Scholar
  91. Parthasarathy, N. V. (1985) F-actin architecture in coleoptile epidermal cells.Eur. J. Cell Biol. 39, 1–12.Google Scholar
  92. Petzinger, E. &Frimmer, M. (1984) Driving forces in hepatocellular uptake of phalloidin and cholate.Biochim Biophys. Acta 778, 539–48.PubMedGoogle Scholar
  93. Pierson, E. S., Derksen, J. &Traas, J. A. (1986) Organization of microfilaments and microtubules in pollen tubes grownin vitro orin vivo in various angiosperms.Eur. J. Cell Biol. 41, 14–18.Google Scholar
  94. Preston, S. F., Volpi, M., Pearson, C. M. &Berlin, R. D. (1987) Regulation of cell shape in the Cloudman melanoma cell line.Proc. Natl. Acad. Sci. U.S.A. 84, 5247–51.PubMedGoogle Scholar
  95. Priess, J. R. &Hirsch, D. I. (1986)Caenorhabditis elegans morphogenesis: The role of the cytoskeleton in elongation of the embryo.Develop. Biol. 117, 156–73.PubMedGoogle Scholar
  96. Prochniewicz-Nakayama, C., Yananagida, T. &Oosawa, F. (1983) Studies on conformation of F-actin in muscle fibers in the relaxed state, rigor, and during contraction using fluorescent phallotoxin.J. Cell Biol. 97, 1663–7.PubMedGoogle Scholar
  97. Quader, H., Hofmann, A. &Schnepf, E. (1987) Shape and movement of the endoplasmic reticulum in onion bulb epidermis cells: Possible involvement of actin.Eur. J. Cell Biol. 44, 17–26.Google Scholar
  98. Reuner, K. H., Presek, P., Boschek, C. B. &Aktories, K. (1987) Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells.Eur. J. Cell Biol. 43, 134–40.PubMedGoogle Scholar
  99. Rodriguez, J. &Deinhardt, F. (1960) Preparation of a semi-permanent mounting medium for fluorescent antibody studies.Virology 12, 316–17.PubMedGoogle Scholar
  100. Roos, U.-P., De Brabander, M. &Nuydens, R. (1986) Cell shape and organization of F-actin and microtubules in randomly moving and stationary amebae ofDictyostelium discoideum.Cell Motility Cytoskel. 6, 176–85.Google Scholar
  101. Rubino, S., Fighetti, M., Unger, E. &Cappuccinelli, P. (1984) Location of actin, myosin and microtubular structures during locomotion ofDictyostelium amoeba.J. Cell Biol. 98, 382–90.PubMedGoogle Scholar
  102. Runeberg, P., Raudaskoski, M. &Virtanen, I. (1986) Cytoskeletal elements in the hyphae of the homobasidiomyceteSchizophyllum commune visualized with indirect immunofluorescence and NBD-phallacidin.Eur. Cell Biol. 41, 25–32.Google Scholar
  103. Sanger, J. W. (1975) Changing patterns of actin localization during cell division.Proc. Natl. Acad. Sci. U.S.A. 72, 1913–16.PubMedGoogle Scholar
  104. Schatten, G., Schatten, H., Spector, I., Cline, C., Paweletz, N., Simerly, C. &Petzelt, C. (1986a) Latrunculin inhibits the micrbfilament mediated processes during fertilization, cleavage and early development in sea urchin eggs.Exp. Cell Res. 166, 191–208.PubMedGoogle Scholar
  105. Schatten, H., Cheney, R., Balczon, R., Willard, M., Cline, G., Simerly, C. &Schatten, G. (1986b) Localization of fodrin during fertilization and early development of sea urchin eggs.Develop. Biol. 118, 457–66.PubMedGoogle Scholar
  106. Schatten, H. &Schatten, G. (1987) Motility and centrosomal organization during sea urchin and mouse fertilization.Cell Motility Cytoskel. 6, 163–75.Google Scholar
  107. Schliwa, M., Nakamura, T., Porter, K. R. &Euteneuer, U. (1984) Tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells.J. Cell Biol. 99, 1045–59.PubMedGoogle Scholar
  108. Schwartz, M. A. &Luna, E. J. (1986) Binding and assembly of actin filaments by plasma membranes fromDictyostelium discoideum.J. Cell Biol. 102, 2067–75.PubMedGoogle Scholar
  109. Seagull, R. W., Falconer, M. M. &Weerdenburg, C. A. (1987) Microfilaments: Dynamics in higher plant cells.J. Cell Biol. 104, 995–1004.PubMedGoogle Scholar
  110. Shimizu, T. (1986) Bipolar segregation of mitochondria, actin network, and surface in theTubifex egg: Role of cortical polarity.Develop. Biol. 116, 241–51.Google Scholar
  111. Small, J. V., Zobeley, S., Rinnerthaler, G. &Faulstich, H. (1988) Coumarin phalloidin: a new actin probe permitting triple immunofluorescence microscopy of the cytoskeleton.J. Cell Sci. 89, 21–24.PubMedGoogle Scholar
  112. Stopford, C. R., Wolberg, G., Prus, K. L., Reynolds-Vaughen, R. &Zimmermann, T. P. (1985) 3-Deazaadenosine-induced disorganization of macrophage microfilaments.Proc. Natl. Acad. Sci. U.S.A. 82, 4060–4.PubMedGoogle Scholar
  113. Strome, S. (1986) Fluorescence vizualization of the distribution of microfilaments in gonads and early embryos of the nematodeCaenorhabditis elegans.J. Cell Biol. 103, 2241–52.PubMedGoogle Scholar
  114. Szczepanowska, J., Borovikov, Y. S. &Jakubiec-Puka, A. (1987) Effect of denervation, reinnervation and hypertrophy on the state of actin filaments in skeletal muscle fibers.Eur. J. Cell Biol. 43, 394–402.PubMedGoogle Scholar
  115. Tamm, S. L. &Tamm, S. (1987) Massive actin bundle couples macrocilia to muscles in the ctenophoreBeroË.Cell Motility Cytoskel. 7, 116–28.PubMedGoogle Scholar
  116. Tiwari, S. C., Wick, S. M., Williamson, R. E. &Gunning, B. E. S. (1984) Cytoskeleton and integration of cellular function in cells of higher plants.J. Cell Biol. 99, 63s-69s.PubMedGoogle Scholar
  117. Toyoshima, Y. Y., Kron, S. J., McNally, E. M., Niebling, K. R., Toyoshima, C. &Spudich, J. A. (1987) Myosin subfragment-1 is sufficient to move actin filamentsin vitro.Nature 328, 536–8.PubMedGoogle Scholar
  118. Traas, J. A., Doonan, J. H., Rawlins, D. J., Shaw, P. J., Watts, J. &Lloyd, C. W. (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus.J. Cell Biol. 105, 387–95.PubMedGoogle Scholar
  119. Tucker, R. P., Edwards, B. F. &Erickson, C. A. (1985) Tension in culture dish: Microfilament organization and migratory behavior of quail neural crest cells.Cell Motility 5, 225–37.PubMedGoogle Scholar
  120. Uyeda, T. Q. P. &Furuya, M. (1986) Effects of low temperature and calcium on microfilament structure in flagellates ofPhysarum polycephalum.Exp. Cell Res. 165, 461–72.PubMedGoogle Scholar
  121. Vandekerckhove, J. A., Deboben, A., Nassal, M. &Wieland, Th. (1985) The phalloidin binding site of F-actin.EMBO J. 4, 22815–18.Google Scholar
  122. Verderame, M., Alcorta, M., Egner, M., Smith, K. &Pollack, R. (1980) Cytoskeletal F-actin pattern quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells.Proc. Natl. Acad. Sci. U.S.A. 77, 6624–8.PubMedGoogle Scholar
  123. Virtanen, I., Badley, R. A., Paasivuo, R. &Lehto, V.-P. (1984) Distinct cytoskeletal domains revealed in sperm cells.J. Cell Biol. 99, 1083–91.PubMedGoogle Scholar
  124. Volberg, T., Geiger, B., Kartenbeck, J. &Francke, W. W. (1986) Changes in membrane-microfilament interaction in intracellular adherens junctions.J. Cell Biol. 102, 1832–42.PubMedGoogle Scholar
  125. Wallace, P. J., Wersto, R. P., Packman, C. H. &Lichtman, M. A. (1984) Chemotactic peptide-induced changes in neutrophil actin conformation.J. Cell Biol. 99, 1060–5.PubMedGoogle Scholar
  126. Wang, E. &Goldberg, A. R. (1978) Binding of desribonuclease I to actin: a new way to visualize microfilament bundles in non-muscle cells.J. Histochem. Cytochem. 26, 745–9.PubMedGoogle Scholar
  127. Wang, Y.-L. (1985) Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling.J. Cell Biol. 101, 597–602.PubMedGoogle Scholar
  128. Warn, R. M. &Magrath, R. (1983) Actin distribution during the cellularization of theDrosophila embryo visualized with F-phalloidin.Exp. Cell Res. 143, 103–14.PubMedGoogle Scholar
  129. Warn, R. M., Magrath, R. &Webb, S. (1984) Distribution of F-actin during cleavage of theDrosophila syncytial blastoderm.J. Cell Biol. 98, 156–62.PubMedGoogle Scholar
  130. Wehland, J. &Weber, K. (1981) Actin rearrangement in living cells revealed by microinjection of a fluorescent phalloidin derivative.Eur. J. Cell Biol. 24, 176–83.PubMedGoogle Scholar
  131. Welch, J. E. &O'Rand, M. G. (1985) Identification and distribution of actin in spermatogenic cells of the rabbit.Develop. Biol. 109, 411–17.PubMedGoogle Scholar
  132. Welles, S. L., Shepro, D. &Hechtman, H. B. (1985) Eicosanoid modulation of stress fibers in cultured bovine aortic endothelial cells.Inflammation 9, 439–50.PubMedGoogle Scholar
  133. Wieland, Th. (1986) Phallotoxins. InPeptides of Poisonous Amanita Mushrooms, pp. 69–88. New York: Springer.Google Scholar
  134. Wieland, Th., Deboben, A. &Faulstich, H. (1980) Components of the green deathcap toodstoolAmanita phalloides. 58. Some dithiolanes derived from ketophalloidin as reagents in biochemical research.Liebigs Ann. Chem. 1980, 416–24.Google Scholar
  135. Wieland, Th. &Faulstich, H. (1978) Amatoxins, phallotoxins, phallolysin and antaminide, the biologically active components of poisonous Amanita mushrooms.Crit. Rev. Biochem. 5, 185–260.Google Scholar
  136. Wieland, Th., Hollosi, M. &Nassal, M. (1983a) über die Inhaltsstoffe des grünen Knollenblätterpilzes. LXI, δ-Aminophalloin, ein 7-Analoges des Phalloidins, und biochemisch nützliche, auch fluoreszierende Derivate.Liebigs Ann. Chem. 1983, 1533–40.Google Scholar
  137. Wieland, Th., Miura, T. &Seeliger, A. (1983b) Analogs of phalloidin. D-Abu2-Lys7-phalloin, an F-actin binding analog, its rhodamine conjugate (RLP) a novel fluorescent F-actin-probe, and D-Ala2-Leu7-phalloin, an inert peptide.Int. J. Peptide Protein Res. 21, 3–10.Google Scholar
  138. Wieland, Th. &Rehbinder, D. (1963) über die Giftstoffe des grünen Knollenblätterpilzes. XXIII. [35S]Markierung und chemische Umwandlungen an eine Seitenkette des Phalloidins.Liebigs Ann. Chem. 670, 149–57.Google Scholar
  139. Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H. &Wieland, Th. (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin.Proc. Natl. Acad. Sci. U.S.A. 76, 4498–502.PubMedGoogle Scholar
  140. Yanagida, T., Nakase, M., Nishiyama, K. &Oosawa, F. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin.Nature 307, 58–60.PubMedGoogle Scholar
  141. Yonemura, S. &Kinoshita, S. (1986) Actin filament organization in the sand dollar egg cortex.Develop. Biol. 115, 171–83.Google Scholar
  142. Yonemura, S. &Mabuchi, I. (1987) Wave of cortical actin polymerization in the sea urchin egg.Cell Motility Cytoskel. 7, 46–53.PubMedGoogle Scholar
  143. Ziparo, E., Zani, B. M., Filippini, A., Stefanini, M. &Marchesi, V. T. (1986) Proteins of the membrane skeleton in rat Sertoli cells.J. Cell Sci. 86, 145–54.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • Heinz Faulstich
    • 1
  • S. Zobeley
    • 1
  • G. Rinnerthaler
    • 2
  • J. V. Small
    • 2
  1. 1.Abteilung PhysiologieMax-Planck-Institut für Medizinische ForschungHeidelbergF.R.G.
  2. 2.Institute of Molecular Biology of the Austrian Academy of SciencesSalzburgAustria

Personalised recommendations