Annali di Matematica Pura ed Applicata

, Volume 149, Issue 1, pp 329–346 | Cite as

Symmetrization in a nonlinear degenerate parabolic problem

  • Maria Transirico
Article
  • 26 Downloads

Summary

Bounds for the solution of a nonlinear degenerate parabolic problem are given by means of the solution of a «symmetrized» problem.

Keywords

Parabolic Problem Degenerate Parabolic Problem Nonlinear Degenerate Parabolic Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Alvino -G. Trombetti,Su una classe di equazioni ellittiche non lineari degeneri, Ricerche di Mat., vol. 29 (1980), pp. 193–212.Google Scholar
  2. [2]
    D. Aronson -M. G. Crandall -L. A. Peletier,Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis, T.M.A., vol. 6, No.10 (1982), pp. 1001–1022.Google Scholar
  3. [3]
    C.Bandle,Isoperimetric inequalities and applications, Pitman, 1980.Google Scholar
  4. [4]
    C. Bandle,On symmetrizations in parabolic equations, J. d'Anal. Mathém., vol. 30 (1976), pp. 98–112.Google Scholar
  5. [5]
    C. Bandle,Isoperimetric inequalities for a class of nonlinear parabolic equations, Z. Angew. Math. Phys., vol. 27 (1976), pp. 377–384.Google Scholar
  6. [6]
    C. Bandle -R. P. Sperb -I. Stakgold,Diffusion and reaction with monotone kinetics, Nonlinear Analysis, Trans. Math. Amer., vol. 8, No.4 (1984), pp. 321–333.Google Scholar
  7. [7]
    C. Bandle -I. Stakgold,The formation of the dead core in parabolic reaction-diffusion problems, Transactions of the Amer. Math. Soc., vol. 286, No.1 (1984), pp. 275–293.Google Scholar
  8. [8]
    P. De Mottoni -A. Schiaffino -A. Tesei,Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems, Ann. Mat. Pura Appl., (4)136 (1984), pp. 35–48.Google Scholar
  9. [9]
    O. A. Ladyzhenskaja -V. A. Solonnikov -N. N. Ural'tseva,Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs, vol. 23, Amer. Math. Soc., Providence, 1968.Google Scholar
  10. [10]
    G.Polya - G.Szegö,Isoperimetric inequalities in Mathematical Physics, Princeton, 1951.Google Scholar
  11. [11]
    M. H. Protter -H. F. Weinberger,Maximum principles in differential equations, Englewood Cliffs, N.J. Prentice Hall, 1967.Google Scholar
  12. [12]
    P. E. Sacks,The initial and boundary value problem for a class of degenerate parabolic equations, Comm. in Partial Diff. Equat.,8 (7) (1983), pp. 693–733.Google Scholar
  13. [13]
    G. Talenti,Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa, (4)3 (1976), pp. 697–718.Google Scholar
  14. [14]
    G. Talenti,Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl., (4)120 (1979), pp. 159–184.Google Scholar
  15. [15]
    J. L. Vasquez,Symétrization pour u t=Δϕ(u) et applications, C. R. Acad. Sci. Paris, t.295, serie I (1982), pp. 71–74; t.296, serie I (1983), p. 455.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1987

Authors and Affiliations

  • Maria Transirico
    • 1
  1. 1.Istituto di Matematica, Facoltà di ScienzeUniversità di SalernoSalernoItalia

Personalised recommendations