Journal of Muscle Research & Cell Motility

, Volume 9, Issue 3, pp 197–218 | Cite as

Pathway for the communication between the ATPase and actin sites in myosin

  • E. Audemard
  • R. Bertrand
  • A. Bonet
  • P. Chaussepied
  • D. Mornet
Review

Keywords

Actin Site 

Abbreviations

S-1

myosin subfragment-1

EDC

1-ethyl-3(3-dimethylamino propyl) carbodiimide

K

kilodalton (s)

ATP

adenosine-5′-triphosphate

LC1

alkali light chain-1

LC3

alkali light chain-2

EDTA

ethylenediamine tetraacetic acid

DTNB

5-5′-dithiobis (2-nitrobenzoic) acid

EEDQ

N-ethoxycarbonyl-2-ethoxy-1-2-dihydroquinoline

IAEDANS

N-(iodoacetyl)-N′-(5 sulfo-1-naphthyl) ethylenediamine

TNBS

2,4,6-trinitrobenzene sulfonate

DTE

dithioerythreitol

IAA

iodoacetic acid

FDNB

1-fluoro-2,4-dinitrobenzene

NEM

N-ethylmaleimide

pPDM

N,N′-p-phenylene dimaleimide

Bz2-ATP

3′-O-(4-benzoyl)-benzoic-adenosine-5′-triphosphate

NPIA

p-nitrophenyliodoacetate

TNB

1,2,4-trinitrobenzene

DHNBS

dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide

BPIA

4-(2-iodoacetamido)benzophenone

FNBD

4-fluoro-7-nitrobenz-2-oxal,3-diazol

MANTP

2((4-azido-2-nitrophenyl)amino)ethyl triphosphate

MANDP

N-(4-azido,2-nitroanilino)ethyl diphosphate

DNP

dinitrophenyl

BMBP

4,4′-bis(N-maleimido)benzophenone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, K. &Burghardt, T. P. (1987) Probe studies of the Mg-ADP state of muscle cross-bridges.Biochemistry 26, 4517–23.PubMedGoogle Scholar
  2. Amos, L. A. (1985) Structure of muscle filaments studied by electron microscopy.Ann. Rev. Biophys. Chem. 14, 291–313.Google Scholar
  3. Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. &Taylor, K. A. (1982) Structural evidence that myosin heads may interact with two sites on F-actin.Nature, bond. 299, 467–9.Google Scholar
  4. Applegate, D. &Reisler, E. (1983) Protease-sensitive regions in myosin subfragment-1.Proc. Natl. Acad. Sci. USA 80, 7109–12.PubMedGoogle Scholar
  5. Applegate, D., Azarcon, A. &Reisler, E. (1984) Tryptic cleavage and substructure of bovine cardiac myosin subfragment-1.Biochemistry 23, 6626–30.PubMedGoogle Scholar
  6. Arata, T. (1986) Structure of the actin-myosin complex produced by crosslinking in the presence of ATP.J. molec. Biol. 191, 107–16.PubMedGoogle Scholar
  7. Atkinson, M. A. L. &Korn, E. D. (1986) The purification and characterization of a globular subfragment of acanthamoeba myosin II.J. Biol. Chem. 261, 3382–3388.Google Scholar
  8. Balint, G., Huang, J. R. &Weigarten, D. S. (1986) Dinitrophenylated thiols in trypsin fragments of the heavy chain from chicken gizzard myosin.Biochem. Int. 13, 455–65.PubMedGoogle Scholar
  9. Balint, M., Sreter, F. A., Wolf, I., Nagy, B. &Gergely, J. (1975) The substructure of heavy meromyosin. The effect of calcium and magnesium on the tryptic fragmentation of HMM.J. biol. Chem. 250, 6168–77.PubMedGoogle Scholar
  10. Balint, M., Wolf, I., Tarscsafalvi, A., Gergely, J. &Streter, F. (1978) Location of SH1 and SH2 in the heavy chain segment of heavy meromyosin.Arch. Biochem. Biophys. 190, 793–9.PubMedGoogle Scholar
  11. Barany, M. &Barany, K. (1959) Studies on ‘Active Centers’ of L-myosin.Biochim. Biophys. Acta 35, 293–309.PubMedGoogle Scholar
  12. Barylko, B., Tooth, P. &Kendrick-Jones, J. (1986) Proteolytic fragmentation of brain myosin and localisation of the heavy chain phosphorylation site.Eur. J. Biochem. 158, 271–82.PubMedGoogle Scholar
  13. Bechet, J. J., Bachouchi, N., Jannot, C. &D'albis, A. (1982) Isoenzyme of myosin subfragment-1.Biochim. Biophys. Acta 703, 54–61.PubMedGoogle Scholar
  14. Bertrand, R., Chaussepied, P., Kassab, R., Boyer, M., Benyamin, Y. &Roustan, C. (1987a) Crosslinking of the skeletal myosin subfragment-1 heavy chain to the NH2-terminal region of actin within residues 40-113.J. Muscle Res. Cell Motil. 8, 70.Google Scholar
  15. Bertrand, R., Mornet, D. &Kassab, R. (1987b) The presence of the arginyl residues at the actinsubfragment-1 interface.Biophys. J. 51, 213.Google Scholar
  16. Bonet, A., Audemard, E., Mornet, D. &Kassab, R. (1986) Properties of gizzard myosin subfragment-1 treated by dibromobimane.J. Muscle Res. Cell Motil. 8, 80.Google Scholar
  17. Bonet, A., Mornet, D., Audemard, E., Derancourt, J., Bertrand, R. &Kassab, R. (1987) Comparative structure of the protease-sensitive regions of the subfragment-1 heavy chain from smooth and skeletal myosin.J. biol. Chem.,262, 16524–30.PubMedGoogle Scholar
  18. Botts, J., Muhlrad, A., Takashi, R., &Morales, M. F. (1982) Effects of tryptic digestion on myosin subfragment-1 and its actin activated adenosine triphosphate.Biochemistry 21, 6903–5.PubMedGoogle Scholar
  19. Botts, J., Takashi, R., Torgerson, P., Hozumi, T., Muhlrad, A., Mornet, D. &Morales, M. F. (1984) On the mechanism of energy transduction in myosin subfragment-1.Proc. Natl Acad. Sci. USA 81, 2060–4.PubMedGoogle Scholar
  20. Burke, M. &Kamalakannan, V. (1985) Effect of tryptic cleavage on the stability of myosin subfragment-1. Isolation and properties of the severed heavy chain subunit.Biochemistry 24, 846–52.PubMedGoogle Scholar
  21. Burke, M. &Sivaramakrishnan, M. (1986) Substructure of skeletal myosin subfragment-1.J. biol. Chem. 261, 12330–6.PubMedGoogle Scholar
  22. Burke, M., Purvis, S. F. &Sivaramakrishnan, K. (1986) Isolation of heavy chain isoenzymes of myosin subfragment-1 by high performance ion exchange chromatography.J. biol. Chem. 261, 253–9.PubMedGoogle Scholar
  23. Burke, M., Sivaramakrishnan, M. &Kamalakannan, V. (1983) On the mode of the alkali light chain association to the heavy chain of myosin subfragment-1.Biochemistry 22, 3046–53.PubMedGoogle Scholar
  24. Burke, M., Zaager, S. &Bliss, J. (1987) Substructure of skeletal myosin subfragment-1 revealed by thermal denaturation.Biochemistry 26, 1492–6.PubMedGoogle Scholar
  25. Cardinaud, R. (1979) Proteolytic fragmentation of myosin: location of SH1 and SH2 thiols.Biochimie 61, 807–21.PubMedGoogle Scholar
  26. Castellani, L., Elliot, B. W., Winkelmann, D. A., Vibert, P. &Cohen, C. (1987) Myosin binding to actin: Structural analysis using myosin fragments.J. molec. Biol. 196, 955–60.PubMedGoogle Scholar
  27. Chaussepied, P., Bertrand, R., Audemard, E., Pantel, P., Derancourt, J. &Kassab, R. (1983) Selective cleavage of the connector segments within the myosin S1 heavy chain by staphylococcal protease.FEBS Lett. 161, 84–88.PubMedGoogle Scholar
  28. Chaussepied, P., Mornet, D. &Kassab, R. (1986b) Characterization of a new conformational state associated with the (SH2-SHX) crosslinked myosin subfragment-1.J. Musc. Res. Cell Motility 8, 70.Google Scholar
  29. Chaussepied, P., Morales, M. F. &Kassab, R. (1987) The myosin (SH2-50 kilodalton fragment) cross-link: Location and consequences.Biochemistry, in press.Google Scholar
  30. Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J. &Kassab, R. (1986c) Abolition of the ATPase activities of skeletal myosin subfragment-1 by a new selective proteolytic cleavage within the 50 kilodalton heavy chain segment.Biochemistry 25, 1134–40.PubMedGoogle Scholar
  31. Chaussepied, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, A. J., Levine, B. A. &Trayer, I. P. (1986e) Properties of the alkali light chain-20 kilodalton fragment complex from skeletal myosin heads.Biochemistry 25, 4540–7.Google Scholar
  32. Chaussepied, P., Mornet, D. &Kassab, R. (1986a) Nucleotide trapping at the ATPase site of myosin heads by a new interthiol crosslinking.Proc. Natl Acad. Sci. USA 83, 2037–41.PubMedGoogle Scholar
  33. Chaussepied, P., Mornet, D. &Kassab, R. (1986f) Identification of polyphosphate recognition sites communicating with actin sites on skeletal myosin subfragment-1 heavy chain.Biochemistry 25, 6426–32.PubMedGoogle Scholar
  34. Chaussepied, P., Mornet, D., Travers, F., Barman, T. &Kassab, R. (1986d) Alteration of the ATP hydrolysis and actin binding properties of thrombin cut myosin subfragment-1.Biochemistry 25, 1141–9.PubMedGoogle Scholar
  35. Chen, T., Lui, J. &Reisler, E. (1987) Immunochemical probing of the N-terminal of the myosin heavy chain.Biochem. Biophys. Res. Commun. 147, 369–74.PubMedGoogle Scholar
  36. Craig, R. (1986) Discrepancies in length of myosin head.Nature, Lond. 320, 688.Google Scholar
  37. Cooke, R. (1972) A new method for producing myosin subfragment-1.Biochem. Biophys. Res. Commun. 49, 1021–8.PubMedGoogle Scholar
  38. Cooke, R. (1987) The mechanism of muscle contraction.Crit. Rev. Biochem. 21, 53–118.Google Scholar
  39. Duke, J., Takashi, R., Ue, K. &Morales, M. F. (1976) Reciprocal reactivity of specific thiols when actin binds to myosin.Proc. Natl Acad. Sci. USA 73, 302–6.PubMedGoogle Scholar
  40. Elliot, A. &Offer, G. (1978) Shape and flexibility of the myosin molecule.J. molec. Biol. 123, 505–19.PubMedGoogle Scholar
  41. Elzinga, M. (1971) Amino-acid sequence around 3-methylhistidine in rabbit skeletal muscle actin.Biochemistry 10, 224–9.PubMedGoogle Scholar
  42. Flink, I. L. &Morkin, E. (1982) Studies on the primary structure of cardiac myosin S-1.Biophys. J. 37, 34a.Google Scholar
  43. Frank, G. &Weeds, A. G. (1974) The amino-acid sequence of the alkali light chain of rabbit skeletal muscle myosin.Eur. J. Biochem. 44, 317–34.PubMedGoogle Scholar
  44. Furukawa, K. &Arata, T. (1984) Effect of tryptic digestion of myosin subfragment-1 on its binding to F-actin.J. Biochem., Tokyo 95, 1343–8.Google Scholar
  45. Gallagher, M. &Elzinga, M. (1980) Amino-acid sequence of a 21,000 Dalton tryptic peptide from myosin.Fed. Proc. FASEB 39, 2168.Google Scholar
  46. Garnier, J., Osguthorpe, D. J. &Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins.J. molec. Biol. 120, 97–120.PubMedGoogle Scholar
  47. Gazith, J., Himmelfarb, S. &Harrington, W. F. (1970) Studies on the subunit structure of myosin.J. biol. Chem. 245, 15–22.PubMedGoogle Scholar
  48. Greene, L. E. (1984) Stoichiometry of actin S-1 cross-linked complex.J. biol. Chem. 259, 7363–6.PubMedGoogle Scholar
  49. Griffiths, A. J. &Trayer, I. P. (1987) Selective cleavage of skeletal myosin subfragment-1 to form a 26 kDa-A2 peptide which shows ATP sensitive actin binding.J. Muscle Res. Cell Motil. 8, 69.Google Scholar
  50. Hammer III,J. A., Jung, G. &Korn, E. D. (1986) Genetic evidence thatAcanthamoeba myosin I is a true myosin.Proc. Natl Acad. Sci. USA 83, 4655–9.PubMedGoogle Scholar
  51. Highsmith, S. &Eden, E. (1986) Myosin subfragment-1 has tertiary structural domains.Biochemistry 25, 2237–42.PubMedGoogle Scholar
  52. Highsmith, S. &Eden, D. (1987) Limited trypsinolysis changes the structural dynamics of myosin subfragment-1.Biochemistry 26, 2747–50.PubMedGoogle Scholar
  53. Highsmith, S. &Jardetzky, O. (1980) Actomyosin energetics.Fed. Proc. Fed. Am. Soc. Exp. Biol. 39, 1881.Google Scholar
  54. Highsmith, S. &Jardetsky, O. (1981) Internal motions in myosin.Biochemistry 20, 780–3.PubMedGoogle Scholar
  55. Hiratsuka, T. (1984) Direct cross-linking of three domains in the myosin head.J. Biochem., Tokyo 96, 269–72.Google Scholar
  56. Hiratsuka, T. (1986a) Involvement of the 50kDa peptide of myosin heads in the ATPase activity revealed by fluorescent modification with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole.J. biol. Chem. 261, 7294–9.PubMedGoogle Scholar
  57. Hiratsuka, T. (1986b) Role of the 50 kilodalton tryptic peptide of myosin subfragment-1 as a communicating apparatus between the adenosine triphosphate and actin binding sites.Biochemistry 25, 2101–9.PubMedGoogle Scholar
  58. Hiratsuka, T. (1987a) Selective fluorescent labelling of the 50, 26 and 20 kilodalton heavy chain segments of myosin ATPase.J. Biochem., Tokyo 101, 1457–62.Google Scholar
  59. Hiratsuka, T. (1987b) Nucleotide-induced change of the interaction between 20 and 26 kilodalton heavy-chain segments of myosin adenosinetriphosphatase revealed by chemical cross-linking.Biochemistry 26, 3168–73.PubMedGoogle Scholar
  60. Hol, W. G. J. (1985) The role of the alpha-helix dipole in protein function and structure.Prog. Biophys. molec. Biol. 45, 149–95.Google Scholar
  61. Hol, W. G. J., Van Duijnon, T. &,Berendsen, H. J. C. (1978) The alpha-helix dipole and the properties of proteins.Nature, Lond. 273, 443–6.Google Scholar
  62. Hozumi, T. (1983) Structure and function of myosin subfragment-1 as studied by tryptic digestion.Biochemistry 22, 799–804.PubMedGoogle Scholar
  63. Hozumi, T. &Muhlrad, A. (1981) Reactive lysyl of myosin subfragment-1: location on the 27K fragment and labelling properties.Biochemistry 20, 2945–50.PubMedGoogle Scholar
  64. Hsu, S. Y., Noumi, T., Takeyama, M., Maeda, M., Ishibashi, S. &Futai, M. (1987) Beta-subunit ofEscherichia coli F1-ATPase: An amino acid replacement within a conserved sequence (GXXXXGKT/S) of nucleotide-binding proteins.FEBS Lett.218, 222–6.PubMedGoogle Scholar
  65. Huszar, G. (1984) Methylated lysines and 3-methylhistidine in myosin. InMethods in Enzymology, Vol. 106, pp. 287–95. New York: Academic Press.Google Scholar
  66. Huszar, G. &Elzinga, M. (1969) ε-N-methyl lysine in myosin.Nature, Lond. 223, 834–5.Google Scholar
  67. Huxley, H. E. (1969) The mechanism of muscular contraction.Science 164, 1356–66.PubMedGoogle Scholar
  68. Hynes, T. R., Block, S. M., White, B. T. &Spudich, J. A. (1987) Movement of myosin fragmentsin vitro: Domains involved in force production.Cell 48, 953–63.PubMedGoogle Scholar
  69. Ikebe, M. &Hartshorne, D. J. (1986) Proteolysis and actin-binding properties of 10S and 6S smooth muscle myosin: Identification of a site protected from proteolysis in the 10S conformation and the binding of actin.Biochemistry 25, 6177–85.PubMedGoogle Scholar
  70. Jackson, A. P., Warriner, K. E., Wells, C. &Bagshaw, C. R. (1986) The actin-activated ATPase of regulated and unregulated scallop heavy meromyosin.FEBS Lett.197, 153–8.Google Scholar
  71. Karn, J., Brenner, S. &Barnett, L. (1983) Protein structural domains in Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by intron.Proc. Natl Acad. Sci. USA 80, 4253–7.PubMedGoogle Scholar
  72. Kassab, R., Mornet, D., Pantel, P., Bertrand, R. &Audemard, E. (1981) Structural aspects of actomyosin interaction.Biochimie 63, 273–89.PubMedGoogle Scholar
  73. Katoh, T., &Morita, F. (1984) Interaction between myosin and F-actin correlation with actin-binding sites on subfragment-1.J. Biochem., Tokyo 96, 1223–30.Google Scholar
  74. Katoh, T., Imae, S. &Morita, F. (1984) Binding of F-actin to a region between SH1 and SH2 groups of myosin subfragment-1 which may determine the high affinity of acto-subfragment-1 complex at rigor.J. Biochem., Tokyo 95, 447–54.Google Scholar
  75. Katoh, T., Katoh, H. &Morita, F. (1985) Actin-binding peptide obtained by the cyanogen bromide cleavage of the 20kDa fragment of myosin subfragment-1.J. biol. Chem. 260, 6723–7.PubMedGoogle Scholar
  76. Korner, M., Thiem, N. V., Cardinaud, R. &Lacombe, G. (1983) Location of an essential carboxyl group along the heavy chain of cardiac and skeletal myosin subfragment-1.Biochemistry 22, 5843–7.PubMedGoogle Scholar
  77. Labbé, J. P., Mornet, D., Roseau, G. &Kassab, R. (1982) Crosslinking of F-actin to skeletal muscle myosin subfragment-1 with bis (imidoester).Biochemistry 21, 6897–902.PubMedGoogle Scholar
  78. Labbé, J. P., Mornet, D., Vandest, P. &Kassab, R. (1981) Proximity of the alkali light chain to the 27K domain of the heavy chain in myosin subfragment-1.Biochem. Biophys. Res. Commun. 102, 466–75.PubMedGoogle Scholar
  79. Lowey, S., Slayter, H. S., Weeds, A. G. &Baker, H. (1969) Substructure of the myosin molecule. Subfragments of myosin by enzymic degradation.J. molec. Biol. 42, 1–29.PubMedGoogle Scholar
  80. Lu, R. C., Moo, L. &Wong, A. (1986) Both the 25 kDa and 50 kDa domains in myosin subfragment-1 are bound to the reactive thiols.Proc. Natl Acad. Sci. USA 83, 6392–6.PubMedGoogle Scholar
  81. Mahmood, R. &Yount, R. G. (1986) Photochemical probes of the active site of myosin. InPerspectives of Biological Energy Transduction. Tokyo: Academic Press.Google Scholar
  82. Maita, T., Hayashida, M., Tanioka, Y., Komine, Y. &Matsuda, G. (1987a) The primary structure of the myosin head.Proc. Natl Acad. Sci. USA 84, 416–20.PubMedGoogle Scholar
  83. Maita, T., Onishi, H., Yajima, E. &Matsuda, G. (1987b) Amino acid sequence of the amino-terminal 24kDa fragment of the heavy chain of chicken gizzard myosin.J. Biochem., Tokyo 102, 133–45.Google Scholar
  84. Marianne-Pepin, T., Mornet, D., Audemard, E. &Kassab, R. (1983) Structural and actin-binding properties of the trypsin produced HMM and S-1 from gizzard smooth muscle myosin.FEBS Lett.159, 211–6.PubMedGoogle Scholar
  85. Marianne-Pepin, T., Mornet, D., Bertrand, R., Labbé, J. P. &Kassab, R. (1985) The interaction of the heavy chain of gizzard myosin head with skeletal F-actin.Biochemistry 24, 3024–9.PubMedGoogle Scholar
  86. Masaki, T., Takano-Ohmuro, H., Uzuka, H., Okamoto, J. &Obinata, T. (1986) 3-Methylhistidine content and pH dependency of ATPase activity of adult and embryonic chicken cardiac ventricular myosins.J. Biochem., Tokyo 100, 1091–4.Google Scholar
  87. Matsumura, S., Kumon, A. &Chiba, T. (1985) Proteolytic substructure of brain myosin.J. biol. Chem. 260, 1959–66.PubMedGoogle Scholar
  88. Mejean, C., Boyer, M., Labbé, J. P., Derancourt, J., Benyamin, Y. &Roustan, C. (1986) Antigenic probes locate the myosin subfragment-1 interaction site on the N-terminal part of actin.Biosci. Rep. 6, 493–9.Google Scholar
  89. Mendelson, R. (1986) The length of myosin subfragment-1.Nature, Lond. 318, 20.Google Scholar
  90. Miller, L., Kalnoski, M., Yunossi, Z., Bulinski, J. C. &Reisler, E. (1987) Antibodies directed against N-terminal residues on actin do not block acto-myosin binding.Biochemistry 26, 6064–70.PubMedGoogle Scholar
  91. Mitchell, E. J., Jakes, R. &Kendrick-Jones, J. (1986) Localization of light chain and actin binding sites on myosin.Eur. J. Biochem. 161, 25–35.Google Scholar
  92. Miyanishi, T. &Tonomura, Y. (1981) Location of the nonidentical two reactive lysine residues in the myosin molecule.J. Biochem., Tokyo 89, 831–9.Google Scholar
  93. Molina, M. I., Kropp, K. E., Gulick, J. &Robbins, J. (1987) The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA.J. biol. Chem. 262, 6478–88.PubMedGoogle Scholar
  94. Moller, W. &Amons, R. (1985) Phosphate-binding sequences in nucleotide-binding proteins.FEBS Lett. 186, 1–7.PubMedGoogle Scholar
  95. Morkin, E., Flink, I. L. &Banerjee, S. K. (1979) Phenylglyoxal modification of cardiac myosin S-1.J. biol. Chem. 254, 12647–52.PubMedGoogle Scholar
  96. Mornet, D. &Ue, K. (1985) Incorporation of 6-carboxyfluoresceine into myosin subfragment-1.Biochemistry 24, 840–6.PubMedGoogle Scholar
  97. Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981a) Structure of the actin myosin interface.Nature, Lond. 292, 301–6.Google Scholar
  98. Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981c) Proteolytic approach to structure and function of actin recognition sites in myosin heads.Biochemistry 20, 2110–20.PubMedGoogle Scholar
  99. Mornet, D., Pantel, P., Audemard, E., Derancourt, J. &Kassab, R. (1985a) Molecular movement promoted by metal nucleotide in the heavy chain regions of myosin heads from skeletal muscle.J. molec. Biol. 183, 479–89.PubMedGoogle Scholar
  100. Mornet, D., Pantel, P., Audemard, E. &Kassab, R. (1979a) Involvement of an arginyl residue in the catalytic activity of myosin head.Eur. J. Biochem. 100, 421–31.PubMedGoogle Scholar
  101. Mornet, D., Pantel, P., Audemard, E. &Kassab, R. (1979b) The limited tryptic cleavage of chymotryptic S-1.Biochem. Biophys. Res. Commun. 89, 925–32.PubMedGoogle Scholar
  102. Mornet, D., Pantel, P., Bertrand, R., Audemard, E. &Kassab, R. (1980) Localization of the reactive trinitrophenylated lysyl residue of myosin ATPase site in the NH2-terminal 27K domain of S-1 heavy chain.FEBS Lett.117, 183–8.PubMedGoogle Scholar
  103. Mornet, D., Pantel, P., Bertrand, R., Audemard, E. &Kassab, R. (1981b) Isolation and characterization of the trypsin modified S-1 derivatives.FEBS Lett. 123, 54–8.PubMedGoogle Scholar
  104. Mornet, D., Ue, K. &Morales, M. F. (1984) Proteolysis and the domain organization of myosin subfragment-1.Proc. Natl Acad. Sci. USA 81, 736–9.PubMedGoogle Scholar
  105. Mornet, D., Ue, K. &Morales, M. F. (1985b) Stabilization of a primary loop in myosin subfragment-1 using a fluorescent cross-linker.Proc. Natl Acad. Sci. USA 82, 1658–62.PubMedGoogle Scholar
  106. Mueller &,Perry (1962) The degradation of the heavy meromyosin by trypsin.Biochem. J. 85, 431–9.PubMedGoogle Scholar
  107. Muhlrad, A. &Morales, M. F. (1984) Isolation and partial renaturation of proteolytic fragments of the myosin head.Proc. Natl Acad. Sci. USA 81, 1003–7.PubMedGoogle Scholar
  108. Muhlrad, A., Kasprzak, A. A., Ue, K., Atjai, K. &Burghart, T. P. (1986) Characterization of the isolated 20kDa and 50kDa fragments of myosin head.Biochim. Biophys. Acta 869, 128–40.PubMedGoogle Scholar
  109. Muhlrad, A., Srivastava, S., Hollosi, G. &Wikman-Coffelt, J. (1981) Studies on the amino groups of myosin ATPase: Trinitrophenylation of reactive lysyl residue in ventricular and atrial myosins.Arch. Bioch. Biophys. 209, 304–14.Google Scholar
  110. Muno, D., Sutoh, N. &Sekine, T. (1987) Photo cross-linking from DNPated SH1 in myosin head.J. Biochem., Tokyo 101, 661–9.Google Scholar
  111. Nakayame, K. L., Wells, J. A., Bridenbaugh, R. L., Okamoto, Y. &Yount, R. G. (1985) 2((4-azido-2-nitrophenyl)amino)ethyl triphosphate, a novel chromophoric and photoaffinity analog of ATP. Synthesis, characterization and interaction with myosin subfragment-1.Biochemistry 24, 5226–35.PubMedGoogle Scholar
  112. Okamoto, Y. &Sekine, T. (1981a) N-terminal region of gizzard myosin heavy chain is critical for the ATPase activity.J. Biochem., Tokyo 90, 833–42.Google Scholar
  113. Okamoto, Y. &Sekine, T. (1981b) Enhancement of ADP binding to gizzard HMM upon cleavage of site 1 in the heavy chain.J. Biochem., Tokyo 90, 843–9.Google Scholar
  114. Okamoto, Y. &Sekine, T. (1987) A new, smaller actin-activable myosin subfragment-1 which lacks the 20kDa, SH1 and SH2 peptide.J. biol. chem. 262, 7951–4.PubMedGoogle Scholar
  115. Okamoto, Y. &Yount, R. G. (1983) Identification of an active site peptide of myosin after photoaffinity labelling.Biophys. J. 41, 298a.Google Scholar
  116. Okamoto, Y. &Yount, R. G. (1985) Identification of an active peptide of skeletal myosin after photoaffinity labelling with N-(4 azido-2 nitrophenyl)2-aminoethyl diphosphate.Proc. Natl Acad. Sci. USA 82, 1575–9.PubMedGoogle Scholar
  117. Okamoto, Y., Sekine, T., Grammer, J. &Yount, R. G. (1986) The essential light chain constitute part of the active site of smooth muscle myosin.Nature, Lond. 324, 78–80.Google Scholar
  118. Onishi, H. (1985)N-iodoacetyl-N′-(5-sulfo-1-naphthyl)ethylenediamine. Modification of myosin from chicken gizzard.J. Biochem., Tokyo 98, 81–6.Google Scholar
  119. Onishi, H., Maita, T., Miyanishi, T., Watanabe, S. &Matsuda, G. (1986) Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1 type cysteine residue.J. Biochem., Tokyo 100, 1433–47.Google Scholar
  120. Onishi, H., Ohtsuka, E., Ikehara, M. &Tonomura, Y. (1973) Energy transfer from tryptophan residues to a fluorescent ATP analog, 1-n-ethenoadenosine triphosphate, bound to H-meromyosin.J. Biochem (Tokyo) 74, 435–50.Google Scholar
  121. Pinter, K., Lu, C. &Slizagyi, L. (1986) Thermal stability of myosin subfragment-1 decreases upon tryptic digestion in the presence of nucleotides.FEBS Lett.200, 221–7.PubMedGoogle Scholar
  122. Rajasekharan, K. N., Sivaramakrishnan, M. &Burke, M. (1987) Proximity and ligand-induced movement of inter domain residues in myosin subfragment-1 containing trapped MgADP and MgPPi probed by multifunctional cross-linking.J. biol. Chem. 262, 11207–14.PubMedGoogle Scholar
  123. Rayment, I. &Winkelmann, D. A. (1984) Crystallization of myosin subfragment-1.Proc. Natl Acad. Sci. USA 81, 4378–80.PubMedGoogle Scholar
  124. Redowicz, M. J., Szilagyi, L. &Strzelecka-Gokas Zewa, M. (1987) Conformational transitions in the myosin head induced by temperature, nucleotide and actin.Eur. J. Biochem. 165, 353–62.PubMedGoogle Scholar
  125. Schukla, K. K., Ramirez, F., Marecek, J. F. &Levy, H. M. (1979) A mechanism for the hydrolysis of MgATP by actomyosin of skeletal muscle.J. Theor. Biol. 76, 359–67.PubMedGoogle Scholar
  126. Seidel, J. C. (1966) Similar effects on enzymatic activity due to chemical modification of either sulfhydryl groups.Biochim. Biophys. Acta 80, 216–9.Google Scholar
  127. Sekine, T. &Kielly, W. W. (1964) The enzymatic properties ofN-ethylmaleimide modified myosin.Biochim. Biophys. Acta 81, 336–45.Google Scholar
  128. Sellers, J. R. &Adelstein, R. S. (1987) Regulation of contractile activity.The Enzymes XVIII, Review 381–418.Google Scholar
  129. Setton, A. &Muhlrad, A. (1984) Effect of mild heat treatment on the ATPase activity and proteolytic sensibility of myosin subfragment-1.Arch. Biochem. Biophys. 235, 411–7.PubMedGoogle Scholar
  130. Sivaramakrishnan, M. &Burke, M. (1982) The free heavy chain of vertebrate skeletal myosin subfragment-1 shows full enzymatic activity.J. biol. Chem. 257, 1102–5.PubMedGoogle Scholar
  131. Srivastava, S., Cable, M. B. &Driska, P. (1986) Photoaffinity labelling of gizzard myosin with 3′-O-(4-benzoyl)-benzoic-adenosine-5′-triphosphate.Eur. J. Biochem. 156, 447–51.PubMedGoogle Scholar
  132. Srivastava, S., Ikebe, M. &Hartshorne, D. J. (1985) Trinitrophenylation of smooth muscle myosin.Biochem. Biophys. Res. Commun. 126, 748–55.PubMedGoogle Scholar
  133. Strehler, E. E., Strehler-Page, M. A., Perriard, J. C., Periasamy, M. &Nadal-Ginard, B. (1986) Complete nucleotide and encoded amino-acid sequence of a mammalian heavy chain gene.J. molec. Biol. 190, 291–317.PubMedGoogle Scholar
  134. Sutoh, K. (1981) Location Of SH1 and SH2 along a heavy chain of myosin subfragment-1.Biochemistry 20, 3281–5.PubMedGoogle Scholar
  135. Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence.Biochemistry 21, 3654–61.PubMedGoogle Scholar
  136. Sutoh, K. (1983) Mapping of actin-binding sites on the heavy chain of myosin subfragment-1.Biochemistry 22, 1579–85.PubMedGoogle Scholar
  137. Sutoh, K. (1987) A short hydrophobic segment next to trp 130 in the myosin heavy chain is close to the ribose ring of ADP bound in the ATPase site.Biochemistry 26, 7648–54.PubMedGoogle Scholar
  138. Sutoh, K. &Lu, R. C. (1987) Identification of two segments, separated by a 45 kilodaltons, of the myosin subfragment-1 heavy-chain that can be cross-linked to the SH1 thiol.Biochemistry 26, 4511–6.PubMedGoogle Scholar
  139. Sutoh, K. &Mabuchi, I. (1986) Improved method for mapping the binding site of an actin-binding protein in the actin sequence. Use of a site-directed antibody against the N-terminal region of actin as a probe of its N-terminus.Biochemistry 25, 6186–92.Google Scholar
  140. Sutoh, K., Tokunaga, M. &Wakabayashi, T. (1987) Electron microscopic visualization of the N-terminus of the myosin heavy chain using a site directed antibody.J. molec. Biol. 195, 953–6.PubMedGoogle Scholar
  141. Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1984) Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin system.J. molec. Biol. 178, 323–39.PubMedGoogle Scholar
  142. Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1986) Electro microscopic visualization of the ATPase site of myosin by photoaffinity labeling with a biotinylated photoreactive ADP analog.Proc. Natl Acad. Sci. USA 83, 212–6.PubMedGoogle Scholar
  143. Suzuki, R., Nishi, N., Tokura, S. &Morita, F. (1987) F-actin-binding synthetic heptapeptide having the amino acid sequence around the SH1 cysteinyl residue of myosin.J. biol. Chem. 262, 11410–2.PubMedGoogle Scholar
  144. Szentkiralyi, E. M. (1982) Scallop regulatory and essential light chains complex with the same heavy chain peptide fragment.Biophys. J. 37, 399a.Google Scholar
  145. Szentkiralyi, E. M. (1984) Tryptic digestion of scallop S-1: Evidence for a complex between the two light chains and a heavy chain peptide.J. Muscle Res. Cell Motil. 5, 147–64.PubMedGoogle Scholar
  146. Szentkiralyi, E. M. (1985) An intact 73K domain is necessary for high salt-ATPase activity of scallop S-1.Biophys. J. 47, 347a.Google Scholar
  147. Szentkiralyi, E. M. (1987) An intact heavy chain at the actin-subfragment 1 interface is required for ATPase activity of scallop myosin.J. Muscle Res. Cell Motil. 8, 349–57.PubMedGoogle Scholar
  148. Szilagyi, L., Balint, M., Sreter, F. A. &Gergely, J. (1979) Photoaffinity labelling with an ATP analog of the N-terminal peptide of myosin.Biochem. Biophys. Res. Commun. 87, 936–45.PubMedGoogle Scholar
  149. Takahashi, K. (1978) Topography of the myosin molecule as visualized by an improved negative staining method.J. Biochem., Tokyo 83, 905–8.Google Scholar
  150. Tokunaga, M., Sutoh, K., Toyoshima, C. &Wakaba-Yashi, T. (1987b) Location of the ATPase site of myosin determined by three-dimensional electron microscopy.Nature, Lond. 329, 635–8.Google Scholar
  151. Tokunaga, M., Suzuki, M., Saeki, K. &Wakabayashi, T. (1987a) Position of the amino terminus of myosin light chain 1 and light chain 2 determined by electron microscopy with monoclonal antibody.J. molec. Biol. 194, 245–55.PubMedGoogle Scholar
  152. Tong, S. &Elzinga, M. (1983) The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin.J. biol. Chem. 258, 13100–10.PubMedGoogle Scholar
  153. Torgerson, P. (1984) Tryptophan emission from myosin subfragment-1: Acrylamide and nucleotide effect monitored by decay-associated spectra.Biochemistry 23, 3002–7.PubMedGoogle Scholar
  154. Trayer, I. P., Trayer, H. R. &Levine, B. A. (1987) Evidence that the N-terminal region of the A1 light chain of myosin interacts directly with the C-terminal region of actin.Eur. J. Biochem. 164, 259–66.PubMedGoogle Scholar
  155. Ue, K. (1986) Intramolecular crosslinking of myosin subfragment-1 with bimane.Biochemistry 26, 1889–94.Google Scholar
  156. Ueno, H., Katoh, T. &Morita, F. (1985) Involvement of C-terminal 14 residues of alkali light chain in binding to the heavy chain of myosin.J. Biochem., Tokyo 87, 1785–93.Google Scholar
  157. Vibert, P., Cohen, C., Hardwicke, P. &Szentgyorgyi, A. G. (1985) Electron microscopy of cross-linked scallop myosin.J. molec. Biol. 183, 283–6.PubMedGoogle Scholar
  158. Vibert, P., Szentkiralyi, E., Hardwicke, P., Szent-Gyorgyi, A. G. &Cohen, C. (1986) Structural models for the regulatory switch of myosin.Biophys. J. 49, 131–3.Google Scholar
  159. Vu, N-D. &Wagner, P. D. (1987) Effect of proteolysis on the adenosinetriphospatase activities of thymus myosin.Biochemistry 26, 4847–53.PubMedGoogle Scholar
  160. Wagner, P. D. &Giniger, E. (1981) Hydrolysis of ATP and reversible binding of F-actin by heavy myosin chain free of all light chains.Nature, Lond. 292, 560–1.Google Scholar
  161. Walker, M., Knight, P. &Trinick, J. (1985) Negative staining of myosin molecule.J. molec. Biol. 184, 535–42.PubMedGoogle Scholar
  162. Walker, J. E., Saraste, H., Runswick, H. J. &Gray, N. J. (1982) Distantly related sequences in the subunits of ATP synthetase, myosin, kinases and other ATP requiring enzymes and a common nucleotide fold.EMBO J. 1, 945–51.PubMedGoogle Scholar
  163. Warrick, H. M., De Lozanne, A., Leinwand, L. A. &Spudich, J. A. (1986) Conserved protein domains in a myosin heavy chain gene from dictyostelium discoideum.Proc. Natl Acad. Sci. USA 83, 9433–7.PubMedGoogle Scholar
  164. Weeds, A. G. &Lowey, S. (1971) Substructure of the myosin molecule. The light chains of myosin.J. molec. Biol. 61, 701–25.PubMedGoogle Scholar
  165. Weeds, A. G. &Pope, B. (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility.J. molec. Biol. 111, 129–57.PubMedGoogle Scholar
  166. Weeds, A. G. &Taylor, R. S. (1975) Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin.Nature, Lond. 257, 54–6.Google Scholar
  167. Wells, J. A. &Yount, R. G. (1979) Active site trapping of nucleotides by crosslinking two sulfhydryls in myosin subfragment-1.Proc. Natl Acad. Sci. USA 76, 4966–70.PubMedGoogle Scholar
  168. Wells, J. A. &Yount, R. G. (1980) Reaction of 5-5′ dithiobis (2-nitrobenzoic acid) with myosin subfragment-1.Biochemistry 19, 1711–17.PubMedGoogle Scholar
  169. Wells, J. A. &Yount, R. G. (1982) Chemical modification of myosin by active-site trapping of metal-nucleotides with thiol crosslinking reagents. InMethods in Enzymology Vol. 85, pp. 93–115. New York: Academic Press.Google Scholar
  170. Werber, M. M., Peyser, Y. M. &Muhlrad, A. (1987) Modification of myosin subfragment-1 tryptophans by dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide.Biochemistry 26, 2903–9.PubMedGoogle Scholar
  171. Winkelmann, D. A. &Lowey, S. (1986) Probing myosin head structure with monoclonal antibodies.J. molec. Biol. 188, 595–612.Google Scholar
  172. Winkelmann, D. A., Almeda, S., Vibert, P. &Cohen, C. (1985) A new myosin fragment: Visualization of the regulatory domain.Nature, Lond. 307, 758–60.Google Scholar
  173. Yagi, K. &Otani, F. (1974) Studies of enzymatically active subfragments of myosin adenosine triphosphatase. Separation of two components.J. Biochem., Tokyo 76, 365–73.Google Scholar
  174. Yamagushi, M. &Sekine, T. (1966) Interaction of myosin subfragment-1 with actin.J. Biochem., Tokyo 59, 24–33.Google Scholar
  175. Yamamoto, K. &Sekine, T. (1979a) Interaction of myosin subfragment-1 with actin. Effect of actin binding on the susceptibility of subfragment-1 to trypsin.J. Biochem., Tokyo 86, 1855–62.Google Scholar
  176. Yamamoto, K. &Sekine, T. (1979b) Interaction of myosin subfragment-1 with actin. Location of the actin binding site in a fragment of subfragment-1 heavy chain.J. Biochem., Tokyo 86, 1863–8.Google Scholar
  177. Yamamoto, K. &Sekine, T. (1980) Substructure of myosin subfragment-1 as revealed by digestion with proteolytic enzymes.J. Biochem., Tokyo 87, 219–26.Google Scholar
  178. Yamamoto, K., Sekine, T. &Sutoh, K. (1984) Spatial relationship between SH1 and the actin binding site on myosin subfragment-1 surface.FEBS Lett. 176, 75–8.PubMedGoogle Scholar
  179. Yount, R. G., Okamoto, Y., Mahmood, R., Makamaye, K., Grammer, J., Huston, E. &Kuwayama, H. (1987) Photochemical mapping of the active site of myosin. InPerspectives in Biological Energy Transduction. pp. 67–62. Tokyo: Yamada Sciences Foundation and Academic Press.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • E. Audemard
    • 1
  • R. Bertrand
    • 1
  • A. Bonet
    • 1
  • P. Chaussepied
    • 1
  • D. Mornet
    • 1
  1. 1.Centre de Biochimie Macromolèculaire du CNRSUniversitè de Montpellier I, Unitè INSERM 249MontpellierFrance

Personalised recommendations