Skip to main content
Log in

Actin filament organization and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak binding states

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The structures of vertebrate skeletal muscles (particularly from frog and fish) in the rigor state are analysed in terms of the concept of target areas on actin filaments. Assuming that 100% of the heads are to be attached to actin in rigor, then satisfactory qualitative low-resolution modelling of observed X-ray diffraction data is obtained if the outer ends of these myosin heads can move axially (total range about 200Å) and azimuthally (total range less than 60°) from their original lattice sites on the myosin filament surface to attach in defined target areas on the actin filaments. On this basis, each actin target area comprises about four actin monomers along one of the two long-pitched helical strands of the actin filament (about 200 Å) or an azimuthal range of actin binding sites of about 100° around the thin filament axis. If myosin heads simply label in a non-specific way the nearest actin monomers to them, as could occur with non-specific transient attachment in a ‘weak binding’ state, then the predicted X-ray diffraction pattern would comprise layer lines at the same axial spacings (orders of 429 Å) as those seen in patterns from resting muscle.

It is shown that actin target areas in vertebrate skeletal muscles are probably arranged on an approximate 62 (right-handed) helix of pitch (P) of about 720 Å, subunit translation P/6 and near repeat P/2. Troponin position need not be considered in defining the labelling pattern of cross-bridges on this 62 helix of target areas; the target areas appear to be defined solely by the azimuthal position of the actin binding sites. The distribution of actin filament labelling patterns could be regular in fish muscle which has a ‘crystalline’ A-band, but will be irregular in higher vertebrate muscles such as frog sartorius muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. &Taylor, K. A. (1982) Structural evidence that myosin heads may interact with two sites on F-actin.Nature 299, 467–9.

    PubMed  Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. &Eisenberg, E. (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.Proc. natn. Acad. Sci. U.S.A. 79, 7288–91.

    Google Scholar 

  • Brenner, B. &Squire, J. M. (1987) Rapid stiffness of single relaxed, skinned fish muscle fibres: no detectable cross-bridge attachment at low ionic strength.J. Musc. Res. Cell Motility 8, 66–7.

    Google Scholar 

  • Brenner, B., Yu, L. C. &Podolsky, R. J. (1984) X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibres at various ionic strengths.Biophys. J. 46, 299–306.

    PubMed  Google Scholar 

  • Cantino, M. &Squire, J. M. (1986) Resting myosin crossbridge configuration in frog muscle thick filaments.J. Cell Biol. 102, 610–18.

    PubMed  Google Scholar 

  • Cooke, R. &Franks, K. (1980) All myosin heads form bonds with actin in rigor rabbit skeletal muscle.Biochemistry 19, 2265–9.

    PubMed  Google Scholar 

  • Depue, R. H. &Rice, R. V. (1965) F-actin is a right-handed helixJ. molec. Biol. 12, 302–3.

    PubMed  Google Scholar 

  • Egelman, E. H., Francis, N. &Derosier, D. J. (1982) F-actin is a helix with a random variable twist.Nature 298, 131–5.

    PubMed  Google Scholar 

  • Freundlich, A., Luther, P. K. &Squire, J. M. (1980) High-voltage electron microscopy of crossbridge interactions in striated muscle.J. Musc. Res. Cell Motility 1, 321–343.

    Google Scholar 

  • Harford, J. J. (1984) PhD Thesis, London University.

  • Harford, J. J. &Squire, J. M. (1986) The crystalline myosin crossbridge arrangement in relaxed bony fish muscle.Biophys. J. 50, 145–55.

    PubMed  Google Scholar 

  • Haselgrove, J. C. (1975) X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle.J. molec. Biol. 92, 113–43.

    PubMed  Google Scholar 

  • Haselgrove, J. C. &Reedy, M. K. (1978) Modelling rigor crossbridge patterns in muscle. Initial studies of the rigor lattice of insect flight muscle.Biophys. J. 24, 713–28.

    PubMed  Google Scholar 

  • Haselgrove, J. C. &Reedy, M. K. (1984) Geometrical constraints affecting crossbridge formation in insect flight muscle.J. Musc. Res. Cell. Motility 5, 3–24.

    Google Scholar 

  • Holmes, K. C., Tregear, R. T. &Barrington-Leigh, J. (1980) Interpretation of the low-angle diffraction from insect flight muscle.Proc. Roy. Soc. B 207, 13–33.

    Google Scholar 

  • Huxley, H. E. (1957) The double array of filaments in cross-striated muscle.J. Biophys. Biochem. Cytol. 3, 631–48.

    PubMed  Google Scholar 

  • Huxley, H. E. &Brown, W. (1967) The low angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor.J. molec. Biol. 30, 383–434.

    PubMed  Google Scholar 

  • Ip, W. &Heuser, J. (1983) Direct visualisation of the myosin crossbridge helices on relaxed rabbit psoas thick filaments.J. molec. Biol. 171, 105–9.

    PubMed  Google Scholar 

  • Kensler, R. W. &Stewart, M. (1983) Frogskeletal muscle thick filaments are three-stranded.J. Cell Biol. 96, 1797–802.

    PubMed  Google Scholar 

  • Kensler, R. W. &Stewart, M. (1986) An ultrastructural study of crossbridge arrangement in the frog thigh muscle thick filament.Biophys J. 49, 343–51.

    PubMed  Google Scholar 

  • Lee, J., Luther, P. K. &Squire, J. M. (1987) Three-dimensional image reconstruction of the vertebrate Z-line.J. Musc. Res. Cell Motility 8, 90.

    Google Scholar 

  • Lovell, S. J., Knight, P. J. &Harrington, W. F. (1981) Fraction of myosin heads bound to thin filaments in rigor filaments from insect flight and vertebrate muscles.Nature 293, 664–6.

    PubMed  Google Scholar 

  • Luther, P. K. &Crowther, R. A. (1984) Threedimensional reconstruction from tilted sections of fish muscle M-band.Nature 307, 566–8.

    PubMed  Google Scholar 

  • Luther, P. K., Munro, P. M. G. &Squire, J. M. (1981) Three-dimensional structure of the vertebrate muscle A-band III: M-region structure and myosin filament symmetry.J. molec. Biol. 151, 703–30.

    PubMed  Google Scholar 

  • Luther, P. K. &Squire, J. M. (1980) Three-dimensional structure of the vertebrate muscle A-band II: The+ myosin filament superlattice.J. molec. Biol. 141, 409–39.

    PubMed  Google Scholar 

  • Luther, P. K. &Squire, J. M. (1985) Three-dimensional structure of the fish muscle Z-line.J. Musc. Res. Cell Motility 6, 77.

    Google Scholar 

  • Lymn, R. W. &Taylor, E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.

    PubMed  Google Scholar 

  • Matsuda, T. &Podolsky, R. J. (1984) X-ray evidence for two structural states of the actomyosin cross-bridge in muscle fibres.Proc. natn. Acad. Sci. USA 81, 2364–2368.

    Google Scholar 

  • Maw, M. C. &Rowe, A. J. (1980) Fraying of A-filaments into three subfilaments.Nature 286, 412–14.

    PubMed  Google Scholar 

  • Miller, A. &Tregear, R. T. (1972) Structure of insect fibrillar flight muscle in the presence and absence of ATP.J. molec. Biol. 70, 85–104.

    PubMed  Google Scholar 

  • Moore, P. B., Huxley, H. E. &Derosier, D. J. (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments.J. molec. Biol. 50, 279–92.

    PubMed  Google Scholar 

  • Offer, G., Couch, J., O'Brien, E. &Elliott, A. (1981) Arrangement of crossbridges in insect flight muscle.J. molec. Biol. 151, 663–702.

    PubMed  Google Scholar 

  • Offer, G. &Elliott, A. (1978) Can a myosin molecule bind to two actin filaments?Nature 271, 325–9.

    PubMed  Google Scholar 

  • Pringle, J. W. S. (1968) InAspects of Cell Motility (edited byMiller, P. L.), pp. 67–86. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reedy, M. K. (1968) Ultrastructure of insect flight muscle.J. molec. Biol. 31, 155–76.

    PubMed  Google Scholar 

  • Reedy, M. K. (1976) A Band periods in vertebrate muscle at rest and in rigor.J. Cell Biol. 70, 340a.

    Google Scholar 

  • Reedy, M. K. &Garrett, W. E., Jr (1977) Electron microscope studies of lethocerus flight muscle in rigor. InInsect Flight Muscle (edited byTregear, R. T.), pp. 115–35. Amsterdam: North-Holland.

    Google Scholar 

  • Squire, J. M. (1972) General model of myosin filament structure II.J. molec. Biol. 72, 125–38.

    PubMed  Google Scholar 

  • Squire, J. M. (1974) Symmetry and three-dimensional arrangement of filaments in vertebrate striated muscle.J. molec. Biol. 90, 153–60.

    PubMed  Google Scholar 

  • Squire, J. M. (1979) Organisation of myosin in the thick filaments of muscle. InFibrous Proteins: Scientific, Industrial and Medical Aspects, Vol. 1 (edited byParry, D. A. D. &Creamer, L. K.), pp. 27–70. London and New York: Academic Press.

    Google Scholar 

  • Squire, J. M. (1981a) Actin target area labelling in rigor striated muscles.J. Musc. Res. Cell Motility 1, 450.

    Google Scholar 

  • Squire, J. M. (1981b)The Structural Basis of Muscular Contraction. New York: Plenum Press.

    Google Scholar 

  • Squire, J. M. (1986)Muscle: Design, Diversity and Disease. Menlo Park, California: Benjamin/Cummings.

    Google Scholar 

  • Squire, J. M., Podolsky, R. J., Yu, L. C. &Brenner, B. (1987) Equatorial X-ray diffraction from resting skinned single fibres of fish muscle: little evidence for crossbridge attachment at low ionic strength.J. Musc. Res. Cell Motility 8, 66.

    Google Scholar 

  • Stewart, M. &Kensler, R. W. (1986) The arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle.J. molec. biol. 192, 831–51.

    PubMed  Google Scholar 

  • Taylor, K. A. &Amos, L. (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments.J. molec. Biol. 147, 297–324.

    PubMed  Google Scholar 

  • Thomas, D. D. &Cooke, R. (1980) Orientation of spin-labelled myosin heads in glycerinated muscle fibres.Biophys. J. 32, 891–906.

    PubMed  Google Scholar 

  • Tsukita, S. &Yano, M. (1985) Actomyosin structure in contracting muscle detected by rapid freezing.Nature 317, 182–4.

    PubMed  Google Scholar 

  • Varriano-Marston, E., Franzini-Armstrong, C. &Haselgrove, J. C. (1984) The structure and disposition of cross-bridges in deep-etched fish muscle.J. Mus. Res. Cell Motility 5, 363–86.

    Google Scholar 

  • Winkelmann, D. A., Mekeel, H. &Rayment, I. (1985) Packing analysis of crystalline myosin subfragment-1. Implications for the size and shape of the myosin head.J. Mol. Biol. 181, 487–501.

    PubMed  Google Scholar 

  • Xu, S., Kress, M. &Huxley, H. E. (1987) X-ray diffraction studies of the structural state of crossbridges in skinned frog sartorius muscle at low ionic strength.J. Musc. Res. Cell Motility 8, 39–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squire, J.M., Harford, J.J. Actin filament organization and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak binding states. J Muscle Res Cell Motil 9, 344–358 (1988). https://doi.org/10.1007/BF01773878

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773878

Keywords

Navigation