Summary
It is shown that the derivatives of the solutions of certain quasilinear degenerate elliptic systems are Hölder-continuous, everywhere, in the interior of the domain. This work generalizes a result of K. Uhlenbeck [34].
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
F. Almgren,Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Annals of Mathematics,87 (1968), pp. 321–391.
L. Caffarelli,Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math.,35 (1982), pp. 771–832.
S. Campanato,Proprietà di Hölderianità di alcune classi di funzioni, Annali di S.N.S. Pisa,17 (1963), pp. 175–188.
E. De Giorgi,Sulla differentiabilità et l'analiticità delle estremali degli integrali multipli regolari, Memorie delle Acc. Sci. Torino, Ser. 3,3 (1957), pp. 25–43.
E.De Giorgi,Frontiere orientate di misura minima, Sem. Mat. S.N.S., Pisa (1960–61).
F. De Thelin,Local regularity properties for solutions of a nonlinear partial differential equation, Nonlinear Analysis,6 (1982), pp. 839–844.
E. Di Benedetto,C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonl. Anal.,7 (1983), pp. 827–850.
L. Evans,A new proof of local C 1,α regularity for solutions of certain degenerate elliptic P.D.E., Journal of Diff. Equations,45 (1982), pp. 356–373.
F. Gehring,The L p-Integrability of the partial derivatives of a quasiconformal mapping, Acta Math.,130 (1973), pp. 265–277.
M.Giaquinta Multiple integrals in the calculus of variations and nonlinear elliptic systems, Vorlesungsreihe des SFB72, Universität Bonn, 1981.
M. Giaquinta -E. Giusti,Nonlinear elliptic systems with quadratic growth, Man. Math.,24 (1978), pp. 323–349.
M. Giaquinta -E. Giusti,On the regularity of minima of variational integrals, Acta Math.,148 (1982), pp. 31–46.
M.Giaquinta - S.Hildebrandt,Estimation à priori des solutions faibles de certains systèmes non linéaires elliptiques, Séminaire Goulaouic-Meyer-Schwartz (1980–81).
M. Giaquinta -S. Hildebrandt,A priori estimates for harmonic mappings, Journal f.d. reine u. angew. Math.,336 (1982), pp. 124–164.
M. Giaquinta -G. Modica,Regularity results for some classes of higher order non linear elliptic systems, Journal f.d. reine und angew. Math.,311–312 (1979), pp. 145–169.
E. Giusti -M. Miranda,Un esempio di solutioni discontinue per un problema di minima relativo ad un integrale regolare del calcolo delle variazioni, Boll. U.M.I.,2 (1968), pp. 1–8.
E. Giusti -M. Miranda,Sulla regolarità delle soluzioni deboli di una classe di sistemi ellitici quasi-lineari, Arch. Rat. Mech. Anal.,31 (1968), pp. 173–184.
P. Hartman -G. Stampacchia,On some nonlinear elliptic differential-functional equations, Acta Math.,115 (1966), pp. 271–310.
S. Hildebrandt -J. Jost -K. Widman,Harmonic mappings and minimal submanifolds, Inventiones Math.,62 (1980), pp. 269–298.
S. Hildebrandt -H. Kaul -K. Widman,An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math.,138 (1977), pp. 1–16.
S. Hildebrandt -K. Widman,On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Annali di S.N.S. Pisa,4 (1977), pp. 145–178.4 (1977), pp. 145–178.
P. Ivert,Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung, Man. Math.,30 (1979), pp. 53–88.
O. Ladyzhenskata -N. Uraltseva,Linear and quasilinear elliptic equations, Academic Press, New York, 1968.
J.Lewis,Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. Journal, to appear.
J. Lions,Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
M. Meier,Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, Journal f.d. reine und angew. Math.,333 (1982), pp. 191–220.
C. Morrey,Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
C. Morrey,Partial regularity results for non-linear elliptic systems, Journal of Math. and Mech.,17 (1968), pp. 649–670.
J. Moser,On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.,14 (1961), pp. 577–591.
J.Nečas,Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, Theory of Nonlinear Operators, Abh. der Akad. der Wiss. der DDR, 1977.
M. Struwe,A counterexample in elliptic regularity theory, Man. Math.,34 (1981), pp. 85–92.
P.Tolksdorf,Regularity for a more general class of quasilinear elliptic equations, Journal of Diff. Equations, to appear.
P.Tolksdorf,A Strong Maximum Principle and regularity for harmonic mappings, Preprint.
K. Uhlenbeck,Regularity for a class of nonlinear elliptic systems, Acta Math.,138 (1977), pp. 219–240.
N. Uraltseva,Degenerate quasilinear elliptic systems, Zap. Naucn. Sem. Leningrad. Otel. Mat. Inst. Steklov (LOMI),7 (1968), pp. 184–222 [Russian].
W. Von Wahl -M. Wiegner,Über die Hölderstetigkeit schwacher Lösungen semilinearer elliptischer Systeme mit einseitiger Bedingung, Man. Math.,19 (1976), pp. 385–399.
M. Wiegner,Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z.,147 (1976), pp. 21–28.
Author information
Authors and Affiliations
Additional information
This research was supported by the Sonderforschungsbereich72 of the Deutsche Forschungsgemeinschaft.
Rights and permissions
About this article
Cite this article
Tolksdorf, P. Everywhere-regularity for some quasilinear systems with a lack of ellipticity. Annali di Matematica pura ed applicata 134, 241–266 (1983). https://doi.org/10.1007/BF01773507
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01773507