Advertisement

Annali di Matematica Pura ed Applicata

, Volume 134, Issue 1, pp 169–199 | Cite as

The basic theory of partial α-recursive operators

  • Robert A. Di Paola
Article

Summary

In this paper, we investigate the theory of partial α-recursive operators and functionals, α an admissible ordinal, which are defined in terms of α-enumeration reducibility. The theory bifurcates into the study of weak operators and functionate, and of operators and functionate proper. The status of the representative theorems of the classical theory (when α=ω) is examined relative to both kinds of operators and functionals. Especial attention is given to the difficulties, when such exist, encountered in generalizing a classical result, whether simple or profound, to level α. In the course of the investigation we are led to consider briefly topics such as the structure theory of completely recursively enumerable classes of α-recursively enumerable sets. This is natural since this theory bears on the properties of effective operations at level α. The paper provides the framework for the further investigation of this and allied topics.

Keywords

Classical Theory Classical Result Basic Theory Structure Theory Weak Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. L. Constable,The operator gap, Journal of the Association of Computing Machinery,14 (1967), pp. 322–336.Google Scholar
  2. [2]
    J. C. E. Dekker -J. Myhill,Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc.,89 (1958), pp. 25–59.Google Scholar
  3. [3]
    R. A. Di Paola,The operator gap theorem in α-recursion theory, Arch. Math. Logik,19 (1978), pp. 115–129.Google Scholar
  4. [4]
    R. A. Di Paola,A lift of a theorem of Friedberg: A Banach-Mazur functional that coincides with no α-recursive functional on the class of α-recursive functions, Journal of Symbolic Logic,46 (1981), pp. 216–232.Google Scholar
  5. [5]
    G. C. Jr. Driscoll,Metarecursively enumerable sets and their metadegrees, The Journal of Symbolic Logic,33 (1968), pp. 389–411.Google Scholar
  6. [6]
    R. M. Friedberg,Four quantifier completeness: A Banach-Mazur functional not uniformly partial recursive, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques,6 (1958), pp. 1–5.Google Scholar
  7. [7]
    B. Jacobs,On generalized computational complexity, The Journal of Symbolic Logic,42 (1977), pp. 47–58.Google Scholar
  8. [8]
    R. B. Jensen,The fine structure of the constructible hierarchy, Annals of Math. Logic,4 (1972), pp. 229–308.Google Scholar
  9. [9]
    G. Kreisel -D. Lacombe -J. R. Shoenfield,Partial recursive functionals and effective operations, inA. Heyting (ed.),Constructivity in Mathematics, proceedings of the colloquium held at Amsterdam, 1957, pp. 195–207, North Holland Publishing Co., Amsterdam.Google Scholar
  10. [10]
    G. Kreisel -D. Lacombe -J. R. Shoenfield,Fonctionelles récursivement définissables et fonctionelles récursives, Comptes Rendus, Paris,245 (1957), pp. 399–402.Google Scholar
  11. [11]
    J. Myhill -J. C. Shepherdson,Effective operations on partial recursive functions, Zeit. für Math. Logik,1 (1955), pp. 310–317.Google Scholar
  12. [12]
    H. G. Rice,Classes of recursively enumerable sets and their decision problems, Trans. Amer. Math. Soc.,74 (1953), pp. 358–366.Google Scholar
  13. [13]
    H. Jr. Rogers,Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Co., New York, (1967), pp. XIX+482.Google Scholar
  14. [14]
    G. E. Sacks -S. G. Simpson,The α-finite injury method, Annals of Math. Logic,4 (1972), pp. 343–368.Google Scholar
  15. [15]
    S. G. Simpson,Degree theory on admissible ordinals, inGeneralised Recursion Theory,J. E. Fenstad andP. G. Hinman, editors, North-Holland Publishing Co., Amsterdam, (1974), pp. 165–193.Google Scholar
  16. [16]
    R. A. Shore,Splitting an α-recursively enumerable set, Trans. Amer. Math. Soc.,204 (1975), pp. 28–41.Google Scholar
  17. [17]
    R. A. Shore,The irregular and non-hyperregular α-re degrees, Israel Journal of Math.,22 (1975), pp. 28–41.Google Scholar
  18. [18]
    Yang Dong-Ping,α-Operator Gap Theorem, Chinese Journal of Computers,2 (1979), pp. 163–173.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1983

Authors and Affiliations

  • Robert A. Di Paola
    • 1
  1. 1.New York

Personalised recommendations