Skip to main content

Advertisement

Log in

Surgery of brain neoplasms using 32-P tumour marker

  • Clinical Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

In a series of 60 patients 62 intraoperative measurements with the 32-P (radiophosphorus) tumour marker were performed. Using miniature semiconductor probes a reliable discrimination between normal brain and neoplastic tissue was possible in nearly all brain tumours. The best results were found in meningiomas, where even small, visually hardly discernible tumour residues within the matrix zone could be reliably detected. Only in low-grade gliomas the application of the 32-P marker was impossible due to count rates similar to or below the basic rates of normal brain. This simple to use, noninvasive method proved its usefulness in all situations where a local radical tumour removal was important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bullard DE, Bigner DD (1985) Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumors. J Neurosurg 63: 2–16

    PubMed  Google Scholar 

  2. Chou SN, Aust JB, Peyton WT, Moore GE (1951) Radioactive isotopes in localization of intracranial lesions. Arch Surg 63: 554–560

    Google Scholar 

  3. Cramer H, Brilmayer C (1951) Verwendbarkeit von FluoresceinNatrium und Atebrin in der Tumordiagnostik. Münch Med Wschr 93: 2234–2238

    Google Scholar 

  4. Erf LA, Lawrence J (1941) Phosphorus metabolism in neoplastic tissues. Proc Soc Exp Biol Med 46: 664–695

    Google Scholar 

  5. Gamache FW, Galicich JH, Posner JB (1980) Treatment of brain metastases by surgical extirpation. In: Weiss L, Gilbert HA, Posner JB (eds) Brain metastases. G.K. Hall, Boston, Mass, pp 390–414

    Google Scholar 

  6. Goldhahn WW (1967) Tetracyclin-Fluoreszenz zur Abgrenzung von Hirntumoren. Arzneim Forschg 17: 139–141

    Google Scholar 

  7. Hevesy v G (1961) Radioisotope für Untersuchungen in Physiologie, Pharmakologie und Diagnostik. In: Schwiegk H (ed) Künstliche radioaktive Isotope. Springer, Berlin Göttingen Heidelberg, pp 536–570

    Google Scholar 

  8. King DL, Chang CH, Pool JL (1966) Radiotherapy in the management of meningeomas. Acta Radiol (Ther) Stockholm 5: 26–33

    Google Scholar 

  9. Maljarewsky A (1978) Vergleichsbeurteilung moderner Methoden der intraoperativen Diagnostik maligner Gliome des Gehirns. Zentralbl Neurochir 39: 91–96

    PubMed  Google Scholar 

  10. Marshak A (1940) Uptake of radioactive phosphorus by nuclei of liver and tumors. Science 92: 460–461

    Google Scholar 

  11. Moore GE (1947) Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106: 130–131

    Google Scholar 

  12. Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J Neurosurg 5: 392–398

    Google Scholar 

  13. Moore GE, Hunter SW, Hubbard TB (1949) Clinical and experimental studies of Fluorescein dyes with special reference to their use for the diagnosis of CNS-tumors. Ann Surg 130: 637–642

    Google Scholar 

  14. Murray KJ (1982) Improved surgical resection of human brain tumors. Part 1: a preliminary study. Surg Neurol 17: 316–319

    PubMed  Google Scholar 

  15. Reinhardt H, Meyer H, Amrein E (1986) Computer aided surgery —Robotik für Hirntumoroperationen? Polyscope-Plus 5: 1–7

    Google Scholar 

  16. Reinhardt H, Meyer H, Amrein E (1988) A computer-assisted device for the intraoperative CT-correlated localization of brain tumors. Eur Surg Res 20: 51–58

    PubMed  Google Scholar 

  17. Robinson CV, Selverstone B (1958) Localization of brain tumors at operation with radioactive phosphorus. J Neurosurg 15: 76–83

    PubMed  Google Scholar 

  18. Roeder F (1940) 32-P im Nervensystem. Der Phosphataustausch des Nervensystems untersucht mit Hilfe der Isotopenmethode. Muster-Schmidt, Göttingen

    Google Scholar 

  19. Selverstone B, Sweet WH, Robinson CV (1949) The clinical use of radioactive phosphorus in the surgery of brain tumors. J Am Med Ass 140: 277–278

    Google Scholar 

  20. Selverstone B, White J (1951) Evaluation of the radioactive mapping technic in the surgery of brain tumors. Ann Surg 134: 387–396

    PubMed  Google Scholar 

  21. Sorsby A, Wright DA, Ikeles A (1942) Vital staining in brain surgery. Proc Roy Soc Med 36: 137–140

    Google Scholar 

  22. Synowitz HJ (1987) Problem des Meningeom-Rezidivs. Zentrbl Neurochir 48: 186–193

    Google Scholar 

  23. Vogel S, Synowitz HJ, Lommatsch P, Thierfelder C, Correns HJ, Seidel G, Bartho H, Matauschek K, Scherd K (1979) Die klinische Anwendung von Halbleiterdetektorsonden. Dt Gesundh Wes 34: 1886–1892

    Google Scholar 

  24. Vogel S, Synowitz HJ (1981) Experimentelle Erprobung und klinische Anwendung von neuentwickelten Halbleiter-Detek-torsonden für die intraoperative Hirntumordiagnostik. Dissertation Humboldt-Universität DDR — Berlin

    Google Scholar 

  25. Wara WM, Sheline GE, Newman H (1975) Radiation therapy of meningeomas. Am J Roentgen 123: 453–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, H. Surgery of brain neoplasms using 32-P tumour marker. Acta neurochir 97, 89–94 (1989). https://doi.org/10.1007/BF01772816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01772816

Keywords

Navigation