Skip to main content
Log in

Seismic wave attenuation in fluid-saturated porous media

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Contrary to the traditional view, seismic attenuation in Biot's theory of fluid-saturated porous media is due to viscous damping of local (not global) pore-fluid motion. Since substantial inhomogeneities in fluid permeability of porous geological materials are to be expected, the regions of highest local permeability contribute most to the wave energy dissipation while those of lowest permeability dominate the fluid flow rate if they are uniformly distributed. This dichotomy can explain some of the observed discrepancies between computed and measured attenuation of compressional and shear waves in porous earth. One unfortunate consequence of this result is the fact that measured seismic wave attenuation in fluid-filled geological materials cannot be used directly as a diagnostic of the global fluid-flow permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berryman, J. G. (1980),Confirmation of Biot's theory, Appl. Phys. Lett.37, 382–384.

    Google Scholar 

  • Berryman, J. G. (1986a),Effective medium approximation for elastic constants of porous solids with miscroscopic heterogeneity, J. Appl. Phys.59, 1136–1140.

    Google Scholar 

  • Berryman, J. G. (1986b),Elastic wave attenuation in rocks containing fluids, Appl. Phys. Lett.49, 552–554.

    Google Scholar 

  • Berryman, J. G. andBlair, S. C. (1986),Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions, J. Appl. Phys.60, 1930–1938.

    Google Scholar 

  • Berryman, J. G. andBlair, S. C. (1987),Kozeny-Carman relations and image processing methods for estimating Darcy's constant, J. Appl. Phys.62, 2221–2228.

    Google Scholar 

  • Berryman, J. G., Bonner, B. P., andChin, R. C. Y. (1983),Evidence for correlation of ultrasonic attenuation and fluid permeability in very low porosity water-saturated rocks, Geophys. Res. Lett.10, 595–598.

    Google Scholar 

  • Biot, M. A. (1956a),Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range, J. Acoust. Soc. Am.28, 168–178.

    Google Scholar 

  • Biot, M. A. (1956b),Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am.28, 179–191.

    Google Scholar 

  • Biot, M. A. (1962),Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys.33, 1482–1498.

    Google Scholar 

  • Chandler, R. (1981),Transient streaming potential measurements on fluid-saturated porous structures: An experimental verification of Biot's slow wave in the quasi-static limit, J. Acoust. Soc. Am.70, 116–121.

    Google Scholar 

  • Chin, R. C. Y., Berryman, J. G., andHedstrom, G. W. (1985),Generalized ray expansion for pulse propagation and attenuation in fluid-saturated porous media, Wave Motion7, 43–66.

    Google Scholar 

  • Dutta, N. C. andOdé, H. (1979a),Attenuation and dispersion of compressional waves in fluid-filled rocks with partial gas saturation (White model)—Part I: Biot theory, Geophysics44, 1777–1788.

    Google Scholar 

  • Dutta, N. C. andOdé H. (1979b),Attenuation and dispersion of compressional waves in fluid-filled rocks with partial gas saturation (White model)—Part II: Results, Geophysics44, 1789–1805.

    Google Scholar 

  • Dutta, N. C. andSeriff, A. J. (1979),On White's model of attenuation in rocks with partial gas saturation. Geophysics44, 1806–1812.

    Google Scholar 

  • Hovem, J. M. (1980),Viscous attenuation of sound in suspensions and high-porosity marine sediments, J. Acoust. Soc. Am.67, 1559–1563.

    Google Scholar 

  • Hovem, J. M. andIngram, G. D. (1979),Viscous attenuation of sound in saturated sand, J. Acoust. Soc. Am.66, 1807–1812.

    Google Scholar 

  • Johnson, D. L., Plona, T. J., Scala, C., Pasierb, F., andKojima, H. (1982),Tortuosity and acoustic slow waves, Phys. Rev. Lett.49, 1840–1844.

    Google Scholar 

  • Johnson, D. L., Koplik, J., andDashen, R. (1986),Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Bull. Am. Phys. Soc.31, 576.

    Google Scholar 

  • Johnston, D. H., Toksöz, M. N., andTimur, A. (1979),Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms, Geophysics44, 691–721.

    Google Scholar 

  • Mavko, G. M. andNur, A. (1975),Melt squirt in the asthenosphere, J. Geophys. Res.80, 1444–1448.

    Google Scholar 

  • Mavko, G. M. andNur, A. (1979),Wave attenuation in partially saturated rocks, Geophysics44, 161–178.

    Google Scholar 

  • Mochizuki, S. (1982),Attenuation in partially saturated rocks, J. Geophys. Res.87, 8598–8604.

    Google Scholar 

  • Murphy, W. F. III (1982),Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass, J. Acoust. Soc. Am.71, 1458–1468.

    Google Scholar 

  • Murphy, W. F. III (1984),Acoustic measures of partial gas saturation in tight sandstones, J. Geophys. Res.89, 11549–11559.

    Google Scholar 

  • Murphy, W. F. III (1985),Sonic and ultrasonic velocities: theory versus experiment, Geophys. Res. Lett.12, 85–88.

    Google Scholar 

  • O'Connell, R. J. andBudiansky, B. (1977),Viscoelastic properties of fluid saturated cracked solids, J. Geophys. Res.82, 5719–5735.

    Google Scholar 

  • Ogushwitz, P. R. (1985),Applicability of the Biot theory, J. Acoust. Soc. Am.77, 429–464.

    Google Scholar 

  • Plona, T. J. (1980),Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett.36, 259–261.

    Google Scholar 

  • Salin, D. andSchön, W. (1981),Acoustics of water saturated packed glass spheres, J. Phys. Lett.42, 477–480.

    Google Scholar 

  • Simmons, G., Wilkens, R., Caruso, L., Wissler, T., andMiller, F. (1982),Physical properties and microstructures of a set of sandstones, Annual Report to the Schlumberger-Doll Research Center, 1 January 1982, p. VI-16.

  • Simmons, G., Wilkens, R., Caruso, L., Wissler, T., andMiller, F. (1983),Physical properties and microstructures of a set of sandstones, Annual Report to the Schlumberger-Doll Research Center, 1 January 1983, p. VI-16.

  • Stoll, R. D. (1974),Acoustic waves in saturated sediments, inPhysics of Sound in Marine Sediments, edited by L. Hampton (Plenum Press, New York), pp. 19–39.

    Google Scholar 

  • Tittmann, B. R., Bulau, J. B., andAbdel-Gawad, M. (1984),Dissipation of elastic waves in fluid saturated rocks, inPhysics and Chemistry of Porous Media, edited by D. L. Johnson and P. N. Sen (American Institute of Physics, New York, 1984), pp. 131–143.

    Google Scholar 

  • Walsh, J. B. (1969),New analysis of attenuation in partially melted rock, J. Geophys. Res.74, 4333–4337.

    Google Scholar 

  • Walsh, J. B. andBrace, W. F. (1984),The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res.89, 9425–9431.

    Google Scholar 

  • White, J. E. (1975),Computed seismic speed and attenuation in rocks with partial gas saturation, Geophysics40, 224–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berryman, J.G. Seismic wave attenuation in fluid-saturated porous media. PAGEOPH 128, 423–432 (1988). https://doi.org/10.1007/BF01772607

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01772607

Key words

Navigation